Validation of CLIGEN Parameter Adjustment Methods for Southeastern Australia and Southwestern Western Australia

Parshin Vaghefi School of Engineering, Griffith University, Nathan, Queensland, Australia

Search for other papers by Parshin Vaghefi in
Current site
Google Scholar
PubMed
Close
and
Bofu Yu School of Engineering, Griffith University, Nathan, Queensland, Australia

Search for other papers by Bofu Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global climate models (GCMs) are usually used for future climate projections. Model output from GCMs needs to be downscaled and stochastic weather generators such as Climate Generator (CLIGEN) are tools to downscale GCM output and to produce synthetic weather sequences that are statistically similar to the observed weather data. Two methods of adjusting CLIGEN parameters were developed to reproduce precipitation sequences for southeastern Australia (SEA), where significant changes in annual precipitation had occurred, and for southwestern Western Australia (SWWA), where the precipitation has shown a significant decreasing trend since the 1920s. The adjustment methods have been validated using observed precipitation data for these regions. However, CLIGEN outputs ultimately will be used as input to other simulation models. The objective of this research was to further validate the methods of CLIGEN parameter adjustment using conceptual hydrological models to simulate streamflow and to compare the streamflow using observed and CLIGEN-generated precipitation data. Six precipitation sites from SEA and SWWA were selected and synthetic time series of daily precipitation were generated for these sites. Conceptual hydrological models, namely, the Australian Water Balance Model and SimHyd, were used for flow simulation and were calibrated using recorded daily streamflow data from six gauging stations in SEA and SWWA. Both monthly and annual streamflow show statistically similar patterns using observed and CLIGEN-generated precipitation data. The adjustment methods for CLIGEN parameters are further validated and can be used to reproduce the significant changes, both abrupt and gradually decreasing, in streamflow for these two climatically contrasting regions of Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Parshin Vaghefi, p.vaghefi@griffith.edu.au

Abstract

Global climate models (GCMs) are usually used for future climate projections. Model output from GCMs needs to be downscaled and stochastic weather generators such as Climate Generator (CLIGEN) are tools to downscale GCM output and to produce synthetic weather sequences that are statistically similar to the observed weather data. Two methods of adjusting CLIGEN parameters were developed to reproduce precipitation sequences for southeastern Australia (SEA), where significant changes in annual precipitation had occurred, and for southwestern Western Australia (SWWA), where the precipitation has shown a significant decreasing trend since the 1920s. The adjustment methods have been validated using observed precipitation data for these regions. However, CLIGEN outputs ultimately will be used as input to other simulation models. The objective of this research was to further validate the methods of CLIGEN parameter adjustment using conceptual hydrological models to simulate streamflow and to compare the streamflow using observed and CLIGEN-generated precipitation data. Six precipitation sites from SEA and SWWA were selected and synthetic time series of daily precipitation were generated for these sites. Conceptual hydrological models, namely, the Australian Water Balance Model and SimHyd, were used for flow simulation and were calibrated using recorded daily streamflow data from six gauging stations in SEA and SWWA. Both monthly and annual streamflow show statistically similar patterns using observed and CLIGEN-generated precipitation data. The adjustment methods for CLIGEN parameters are further validated and can be used to reproduce the significant changes, both abrupt and gradually decreasing, in streamflow for these two climatically contrasting regions of Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Parshin Vaghefi, p.vaghefi@griffith.edu.au
Save
  • Bastola, S., C. Murphy, and R. Fealy, 2012: Generating probabilistic estimates of hydrological response for Irish catchments using a weather generator and probabilistic climate change scenarios. Hydrol. Processes, 26, 23072321, doi:10.1002/hyp.8349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BoM, 1989: Climate of Australia. Bureau of Meteorology, 49 pp.

  • BoM, 2016: Climate data online. Accessed 22 April 2015. [Available online at www.bom.gov.au/climate/data/.]

  • Boughton, W. C., 1993: A hydrograph-based model for estimating the water yield of ungauged catchments. Proceedings of the 1993 Hydrology and Water Resources Conference. Institution of Engineers, National Conference Publication 93/14, 317–324.

  • Boughton, W. C., 2004: The Australian water balance model. Environ. Modell. Software, 19, 943956, doi:10.1016/j.envsoft.2003.10.007.

  • Boughton, W. C., and D. Carroll, 1993: A simple combined water balance/flood hydrograph model. Proceedings of the 1993 Hydrology and Water Resources Conference. Institution of Engineers, National Conference Publication 93/14, 299–304.

  • Chambers, L. E., 2001: Classifying rainfall districts: A southwestern Australian study. Aust. Meteor. Mag., 50, 91103.

  • Chen, J., and F. P. Brissette, 2014: Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China. Int. J. Climatol., 34, 30893105, doi:10.1002/joc.3896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and F. P. Brissette, 2015: Combining stochastic weather generation and ensemble weather forecasts for short-term streamflow prediction. Water Resour. Manage., 29, 33293342, doi:10.1007/s11269-015-1001-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, R. Leconte, and A. Caron, 2012: A versatile weather generator for daily precipitation and temperature. Trans. ASABE, 55, 895906, doi:10.13031/2013.41522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and X. J. Zhang, 2016: Hydrological modeling using a multisite stochastic weather generator. J. Hydrol. Eng., 21, 04015060, doi:10.1061/(ASCE)HE.1943-5584.0001288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., M. Peel, and A. Western, 2002: Application and testing of the simple rainfall–runoff model SimHyd. Mathematical Models of Small Watershed Hydrology and Applications, V. Singh and D. Frevert, Eds., Water Resources Publications, 335–367.

  • Chiew, F. H. S., J. Vaze, N. R. Viney, M. Perraud, J. Teng, and D. A. Post, 2008: Modelling runoff and climate change impact on runoff in 178 catchments in the Murray–Darling basin using Sacramento and SIMHYD rainfall–runoff models. Proceedings of Water Down Under 2008, M. Lambert, T. M. Daniell, and M. Leonard, Eds., Causal Productions, 87–97.

  • Cornish, P., 1977: Changes in seasonal and annual rainfall in New South Wales. Search, 8, 3840.

  • Dubrovský, M., J. Buchtele, and Z. Žalud, 2004: High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Climatic Change, 63, 145179, doi:10.1023/B:CLIM.0000018504.99914.60.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., C. Yang, C. Liu, and H. Huang, 2013: Assessment and validation of CLIGEN-simulated rainfall data for northern Taiwan. Paddy Water Environ., 11, 161173, doi:10.1007/s10333-011-0301-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favis-Mortlock, D., and M. Savabi, 1996: Shifts in rates and spatial distributions of soil erosion and deposition under climate change. Advances in Hillslope Processes, Vol. 1, M. Anderson and S. Brooks, Eds., Wiley, 529–560.

  • Feng, J., J. Li, and Y. Li, 2010: A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia. J. Climate, 23, 13341353, doi:10.1175/2009JCLI2837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, G. R., 1982: Modeling the erosion process. Hydrologic Modeling of Small Watersheds, ASAE Monograph, No. 5, American Society of Agricultural Engineers, 297–360.

  • Ghidey, F., and E. E. Alberts, 1996: Comparison of measured and WEPP predicted runoff and soil loss for Midwest claypan soil. Trans. ASAE, 39, 13951402, doi:10.13031/2013.27631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodess, C., and J. Palutikof, 1998: Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int. J. Climatol., 18, 10511083, doi:10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Johnson, G. L., C. L. Hanson, S. P. Hardegree, and E. B. Ballard, 1996: Stochastic weather simulation: Overview and analysis of two commonly used models. J. Appl. Meteor. Climatol., 35, 18781896, doi:10.1175/1520-0450(1996)035<1878:SWSOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R., F. H. Chiew, F. Boughton, and L. Zhang, 2006: Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour., 29, 14191429, doi:10.1016/j.advwatres.2005.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilsby, C. P., and Coauthors, 2007: A daily weather generator for use in climate change studies. Environ. Modell. Software, 22, 17051719, doi:10.1016/j.envsoft.2007.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kou, X., J. Ge, Y. Wang, and C. Zhang, 2007: Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China. J. Hydrol., 347, 347357, doi:10.1016/j.jhydrol.2007.09.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavery, B., A. Kariko, and N. Nicholls, 1992: A high-quality historical rainfall data set for Australia. Aust. Meteor. Mag., 40, 3339.

  • Lavery, B., G. Joung, and N. Nicholls, 1997: An extended high-quality historical rainfall data set for Australia. Aust. Meteor. Mag., 46, 2738.

    • Search Google Scholar
    • Export Citation
  • Li, F., L. E. Chambers, and N. Nicholls, 2005: Relationships between rainfall in the southwest of Western Australia and near-global patterns of sea-surface temperature and mean sea-level pressure variability. Aust. Meteor. Mag., 54, 2333.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Cai, and E. Campbell, 2005: Statistical modeling of extreme rainfall in southwest Western Australia. J. Climate, 18, 852863, doi:10.1175/JCLI-3296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. P. Brissette, and J. Chen, 2013: Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrol. Processes, 27, 37183729, doi:10.1002/hyp.9499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. P. Brissette, and J. Chen, 2014: Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China. Int. J. Climatol., 34, 462471, doi:10.1002/joc.3699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobo, G., J. Frankenbeger, D. Flanagan, and C. Bonilla, 2015: Evaluation and improvement of The CLIGEN model for storm and rainfall erosivity generation in central Chile. Catena, 127, 206213, doi:10.1016/j.catena.2015.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mavromatis, T., and J. Hansen, 2001: Interannual variability characteristics and simulated crop response of four stochastic weather generators. Agric. For. Meteor., 109, 283296, doi:10.1016/S0168-1923(01)00272-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, D., R. Stone, S. Martens, J. Thomas, R. Silberstein, R. Ali, and G. Hodgson, 2012: Climate change impacts on water yields and demands in southwestern Australia. J. Hydrol., 475, 488498, doi:10.1016/j.jhydrol.2012.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Y., J. Kryjov, K. An, S. Hameed, S. Sohn, W. Lee, and J. Oh, 2011: Evaluation of the weather generator CLIGEN with daily precipitation characteristics in Korea. Asia-Pac. J. Atmos. Sci., 47, 255263, doi:10.1007/s13143-011-0014-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models. Part 1: A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nearing, M. A., G. A. Foster, L. J. Lane, and S. C. Finkner, 1989: A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans. ASAE, 32, 15871593, doi:10.13031/2013.31195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., and B. Lavery, 1992: Australian rainfall trends during the twentieth century. Int. J. Climatol., 12, 153163, doi:10.1002/joc.3370120204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., and A. Kariko, 1993: East Australian rainfall events: Interannual variations, trends, and relationships with the Southern Oscillation. J. Climate, 6, 11411152, doi:10.1175/1520-0442(1993)006<1141:EAREIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicks, A., and G. Gardner, 1994: CLIGEN: A weather generator for climate inputs to water resource and other models. Proceedings of the 5th International Conference on Computers in Agriculture, D. G. Watson, F. S. Zazueta, and T. V. Harrison, Eds., American Society of Agricultural Engineers, 3–94.

  • Nicks, A., L. Lane, and G. Gardner, 1995: Chapter 2: Weather generator. In USDA Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Rep. 10, USDA-ARS, 2.1–2.22.

  • Pittock, A., 1983: Climate change in Australia: Implications for a CO2-warmed Earth. Climatic Change, 5, 321340, doi:10.1007/BF02423529.

  • Podger, G., 2004: Description of models. Rainfall Runoff Library, G. Podger, Ed., Cooperative Research Centre for Catchment Hydrology, 47–64. [Available online at http://www.toolkit.net.au/rrl.]

  • Porter, J., and T. A. McMahon, 1975: Application of a catchment model in southeastern Australia. J. Hydrol., 24, 121134, doi:10.1016/0022-1694(75)90146-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., N. Reynard, and S. Crroks, 2002: Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol. Processes, 16, 11371150, doi:10.1002/hyp.1054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruski, F., and M. A. Nearing, 2002a: Runoff and soil-loss responses to changes in precipitation: A computer simulation study. J. Soil Water Conserv., 57, 716.

    • Search Google Scholar
    • Export Citation
  • Pruski, F., and M. A. Nearing, 2002b: Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resour. Res., 38, 1298, doi:10.1029/2001WR000493.

    • Crossref
    • Export Citation
  • Richardson, C., and D. Wright, 1984: WGEN: A model for generating daily weather variables. Rep. ARS-8, 86 pp.

  • Richardson, C., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182190, doi:10.1029/WR017i001p00182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., and J. Porter, 1995: Climatic variability and the modelling of crop yields. Agric. For. Meteor., 73, 265283, doi:10.1016/0168-1923(94)05078-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., and E. M. Barrow, 1997: Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35, 397414, doi:10.1023/A:1005342632279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., and E. M. Barrow, 2002: LARS-WG: A stochastic weather generator for use in climate impact studies. User manual, version 3.0, 28 pp. [Available online at http://resources.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARS-WG-Manual.pdf.]

  • Silberstein, R., and Coauthors, 2012: Climate change and runoff in southwestern Australia. J. Hydrol., 475, 441455, doi:10.1016/j.jhydrol.2012.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, I., 2004: An assessment of recent trends in Australian rainfall. Aust. Meteor. Mag., 53, 163173.

  • Stöckle, C., G. Campbell, and R. Nelson, 1999: ClimGen manual. Washington State University.

  • Timbal, B., 2004: Southwest Australia past and future rainfall trends. Climate Res., 26, 233249, doi:10.3354/cr026233.

  • Tiwari, A., L. M. Risse, and M. A. Nearing, 2000: Evaluation of WEPP and its comparison with USLE and RUSLE. Trans. ASAE, 43, 11291135, doi:10.13031/2013.3005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaghefi, P., and B. Yu, 2011: Use of CLIGEN to simulate climate change in southeastern Australia. Trans. ASABE, 54, 857867, doi:10.13031/2013.37111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaghefi, P., and B. Yu, 2016: Use of CLIGEN to simulate decreasing precipitation trends in the southwest of Western Australia. Trans. ASABE, 59, 4961, doi:10.13031/trans.59.10829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., T. Pagano, S. Zhou, H. Hapuarachchi, L. Zhang, and D. Robertson, 2011: Monthly versus daily water balance models in simulating monthly runoff. J. Hydrol., 404, 166175, doi:10.1016/j.jhydrol.2011.04.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheater, H. S., and Coauthors, 2005: Spatial–temporal rainfall modelling for flood risk estimation. Stochastic Environ. Res. Risk Assess., 19, 403416, doi:10.1007/s00477-005-0011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R., and T. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geog., 21, 530–548, doi:10.1177/030913339702100403.

    • Crossref
    • Export Citation
  • Wilby, R., T. Wigley, D. Conway, P. Jones, B. Hewitson, J. Main, and D. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 29953008, doi:10.1029/98WR02577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1992: Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, 22, 6784, doi:10.1007/BF00143344.

  • Wilks, D., 1999: Multisite downscaling of daily precipitation with a stochastic weather generator. Climate Res., 11, 125136, doi:10.3354/cr011125.

  • Xu, C., 1999: From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr., 23, 229249, doi:10.1191/030913399667424608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., 2000: Improvement and evaluation of CLIGEN for storm generation. Trans. ASAE, 43, 301307, doi:10.13031/2013.2705.

  • Yu, B., 2002: Using CLIGEN to generate RUSLE climate inputs. Trans. ASAE, 45, 9031001, doi:10.13031/2013.9952.

  • Yu, B., 2003: An assessment of uncalibrated CLIGEN in Australia. Agric. For. Meteor., 119, 131148, doi:10.1016/S0168-1923(03)00141-2.

  • Yu, B., 2005: Adjustment of CLIGEN parameters to generate precipitation change scenarios in southeastern Australia. Catena, 61, 196209, doi:10.1016/j.catena.2005.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and D. T. Neil, 1991: Global warming and regional rainfall: The difference between average and high-intensity rainfalls. Int. J. Climatol., 11, 653661, doi:10.1002/joc.3370110607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and Z. Zhu, 2015: A comparative assessment of AWBM and SimHyd for forested watersheds. Hydrol. Sci. J., 60, 12001212, doi:10.1080/02626667.2014.961924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., C. A. Ciesiolka, C. W. Rose, and K. J. Coughlan, 2000: A validation test of WEPP to predict runoff and soil loss from a pineapple farm on a sandy soil in subtropical Queensland, Australia. Aust. J. Soil Res., 38, 537554, doi:10.1071/SR99104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., 2005a: Generating correlative storm variables for CLIGEN using a distribution-free approach. Trans. ASAE, 48, 567575, doi:10.13031/2013.18331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., 2005b: Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agric. For. Meteor., 135, 215229, doi:10.1016/j.agrformet.2005.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., 2007: A comparison of explicit and implicit spatial downscaling of GCM output for soil erosion and crop production assessments. Climatic Change, 84, 337363, doi:10.1007/s10584-007-9256-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., and J. Garbrecht, 2003: Evaluation of CLIGEN precipitation parameters and their implication on WEPP runoff and erosion prediction. Trans. ASAE, 46, 311320, doi:10.13031/2013.12982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., and W.-Z. Liu, 2005: Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China. Agric. For. Meteor., 131, 127142, doi:10.1016/j.agrformet.2005.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., M. A. Nearing, L. M. Risse, and K. C. McGregor, 1996: Evaluation of WEPP runoff and soil loss predictions using natural runoff plot data. Trans. ASAE, 39, 855863, doi:10.13031/2013.27570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Liu, Z. Wang, and Q. Zhu, 2008: Evaluation of CLIGEN for storm generation on the semiarid Loess Plateau in China. Catena, 73, 19, doi:10.1016/j.catena.2007.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-G., M. A. Nearing, X.-C. Zhang, Y. Xie, and H. Wei, 2010: Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in northeast China. J. Hydrol., 384, 97106, doi:10.1016/j.jhydrol.2010.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, X. W., Y. P. Li, G. H. Huang, and J. Liu, 2016: Assessment of climate change impacts on watershed in cold-arid region: An integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method. Climate Dyn., 47, 191209, doi:10.1007/s00382-015-2831-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 204 58 10
PDF Downloads 145 44 8