Effect of Soil Moisture on Diurnal Convection and Precipitation in Large-Eddy Simulations

Guido Cioni Max Planck Institute for Meteorology, and International Max Planck Research School on Earth System Modelling, Hamburg, Germany

Search for other papers by Guido Cioni in
Current site
Google Scholar
PubMed
Close
and
Cathy Hohenegger Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Cathy Hohenegger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A determination of the sign and magnitude of the soil moisture–precipitation feedback relies either on observations, where synoptic variability is difficult to isolate, or on model simulations, which suffer from biases mainly related to poorly resolved convection. In this study, a large-eddy simulation model with a resolution of 250 m is coupled to a land surface model and several idealized experiments mimicking the full diurnal cycle of convection are performed, starting from different spatially homogeneous soil moisture conditions. The goal is to determine under which conditions drier soils may produce more precipitation than wetter ones. The methodology of previous conceptual studies that have quantified the likelihood of convection to be triggered over wet or dry soils is followed but includes the production of precipitation. Although convection can be triggered earlier over dry soils than over wet soils under certain atmospheric conditions, total precipitation is found to always decrease over dry soils. By splitting the total precipitation into its magnitude and duration component, it is found that the magnitude strongly correlates with surface latent heat flux, hence implying a wet soil advantage. Because of this strong scaling, changes in precipitation duration caused by differences in convection triggering are not able to overcompensate for the lack of evaporation over dry soils. These results are further validated using two additional atmospheric soundings and a series of perturbed experiments that consider cloud radiative effects, as well as the effect of large-scale forcing, winds, and plants on the soil moisture–precipitation coupling.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guido Cioni, guido.cioni@mpimet.mpg.de

Abstract

A determination of the sign and magnitude of the soil moisture–precipitation feedback relies either on observations, where synoptic variability is difficult to isolate, or on model simulations, which suffer from biases mainly related to poorly resolved convection. In this study, a large-eddy simulation model with a resolution of 250 m is coupled to a land surface model and several idealized experiments mimicking the full diurnal cycle of convection are performed, starting from different spatially homogeneous soil moisture conditions. The goal is to determine under which conditions drier soils may produce more precipitation than wetter ones. The methodology of previous conceptual studies that have quantified the likelihood of convection to be triggered over wet or dry soils is followed but includes the production of precipitation. Although convection can be triggered earlier over dry soils than over wet soils under certain atmospheric conditions, total precipitation is found to always decrease over dry soils. By splitting the total precipitation into its magnitude and duration component, it is found that the magnitude strongly correlates with surface latent heat flux, hence implying a wet soil advantage. Because of this strong scaling, changes in precipitation duration caused by differences in convection triggering are not able to overcompensate for the lack of evaporation over dry soils. These results are further validated using two additional atmospheric soundings and a series of perturbed experiments that consider cloud radiative effects, as well as the effect of large-scale forcing, winds, and plants on the soil moisture–precipitation coupling.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guido Cioni, guido.cioni@mpimet.mpg.de
Save
  • Barthlott, C., and N. Kalthoff, 2011: A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain. J. Atmos. Sci., 68, 29712987, doi:10.1175/JAS-D-11-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M., 1974: Climate and Life. International Geophysics Series, Vol. 18, Academic Press, 508 pp.

  • Chen, F., and R. Avissar, 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 13821401, doi:10.1175/1520-0450(1994)033<1382:IOLSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf., 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., C. Rio, F. Guichard, M. Lothon, G. Canut, D. Bouniol, and A. Gounou, 2012: Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations. Quart. J. Roy. Meteor. Soc., 138, 5671, doi:10.1002/qj.903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1984: Modeling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 58–72.

    • Crossref
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, doi:10.1002/2015MS000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model: Part II: Physical parameterization. Consortium for Small-Scale Modeling Doc., 161 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Duerinck, H., R. van der Ent, N. van de Giesen, G. Schoups, V. Babovic, and P. J.-F. Yeh, 2016: Observed soil moisture–precipitation feedback in Illinois: A systematic analysis over different scales. J. Hydrometeor., 17, 16451660, doi:10.1175/JHM-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fermepin, S., and S. Bony, 2014: Influence of low-cloud radiative effects on tropical circulation and precipitation. J. Adv. Model. Earth Syst., 6, 513526, doi:10.1002/2013MS000288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res., 108, 8385, doi:10.1029/2001JD001515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. Seneviratne, P. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, doi:10.5194/hess-19-3617-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, doi:10.1175/JHM-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, R., C. Moseley, L. N. Böske, S. Muppa, V. Maurer, S. Raasch, and B. Stevens, 2017a: Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign. Atmos. Chem. Phys., 17, 70837109, doi:10.5194/acp-17-7083-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, R., and Coauthors, 2017b: Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quart. J. Roy. Meteor. Soc., 143, 69100, doi:10.1002/qj.2947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1975: Turbulence. McGraw-Hill, 790 pp.

  • Hohenegger, C., A. Walser, W. Langhans, and C. Schär, 2008: Cloud-resolving ensemble simulations of the August 2005 alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904, doi:10.1002/qj.252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J., J. Dudhia, and A. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, doi:10.3402/tellusa.v14i2.9537.

  • Maronga, B., and Coauthors, 2015: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, doi:10.5194/gmd-8-2515-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. van den Berg, A. J. Teuling, and R. A. M. de Jeu, 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. V.-G. de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, doi:10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petch, J., A. Brown, and M. Gray, 2002: The impact of horizontal resolution on the simulations of convective development over land. Quart. J. Roy. Meteor. Soc., 128, 20312044, doi:10.1256/003590002320603511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. G. Cripe, 1999: Alternative methods for specification of observed forcing in single-column models and cloud system models. J. Geophys. Res., 104, 24 52724 545, doi:10.1029/1999JD900765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. J. Appl. Phys., 1, 318333, doi:10.1063/1.1745010.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, doi:10.1175/JAS-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., C. Hohenegger, J. Schmidli, and C. Schär, 2012: Diurnal equilibrium convection and land surface–atmosphere interactions in an idealized cloud-resolving model. Quart. J. Roy. Meteor. Soc., 138, 15261539, doi:10.1002/qj.1892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrodin, R., and E. Heise, 2002: A new multi-layer soil model. COSMO Newsletter, No. 2, Consortium for Small-Scale Modeling, Offenbach, Germany, 149–151. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter02/newsLetter_02.pdf.]

  • Schulz, J.-P., G. Vogel, C. Becker, S. Kothe, U. Rummel, and B. Ahrens, 2016: Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil. Meteor. Z., 25, 607620, doi:10.1127/metz/2016/0537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, doi:10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., S. Bony, and M. Webb, 2012: Clouds On-Off Klimate Intercomparison Experiment (COOKIE). EUCLIPSE Tech. Rep., 12 pp. [Available online at http://www.euclipse.eu/downloads/Cookie.pdf.]

  • Tawfik, A. B., P. A. Dirmeyer, and J. A. Santanello Jr., 2015: The heated condensation framework. Part I: Description and Southern Great Plains case study. J. Hydrometeor., 16, 19291945, doi:10.1175/JHM-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, doi:10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Ent, R. J., H. H. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, doi:10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, H., and Coauthors, 2013: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—Part 1: Formulation and performance of the baseline version. Geosci. Model Dev., 6, 735763, doi:10.5194/gmd-6-735-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., Y. Kim, and D. Wang, 2007: Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface water budget. J. Hydrometeor., 8, 551570, doi:10.1175/JHM573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2015: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, doi:10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 723 210 10
PDF Downloads 506 140 6