Ensemble Streamflow Forecasting across the U.S. Mid-Atlantic Region with a Distributed Hydrological Model Forced by GEFS Reforecasts

Ridwan Siddique Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Ridwan Siddique in
Current site
Google Scholar
PubMed
Close
and
Alfonso Mejia Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Alfonso Mejia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The quality of ensemble streamflow forecasts in the U.S. mid-Atlantic region (MAR) is investigated for short- to medium-range forecast lead times (6–168 h). To this end, a regional hydrological ensemble prediction system (RHEPS) is assembled and implemented. The RHEPS in this case comprises the ensemble meteorological forcing, a distributed hydrological model, and a statistical postprocessor. As the meteorological forcing, precipitation, and near-surface temperature outputs from the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System Reforecast, version 2 (GEFSRv2), are used. The Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is used as the distributed hydrological model, and a statistical autoregressive model with an exogenous variable is used as the postprocessor. To verify streamflow forecasts from the RHEPS, eight river basins in the MAR are selected, ranging in drainage area from ~262 to 29 965 km2 and covering some of the major rivers in the MAR. The verification results for the RHEPS show that, at the initial lead times (1–3 days), the hydrological uncertainties have more impact on forecast skill than the meteorological ones. The former become less pronounced, and the meteorological uncertainties dominate, across longer lead times (>3 days). Nonetheless, the ensemble streamflow forecasts remain skillful for lead times of up to 7 days. Additionally, postprocessing increases forecast skills across lead times and spatial scales, particularly for the high-flow conditions. Overall, the proposed RHEPS is able to improve streamflow forecasting in the MAR relative to the deterministic (unperturbed GEFSRv2 member) forecasting case.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alfonso Mejia, amejia@engr.psu.edu

Abstract

The quality of ensemble streamflow forecasts in the U.S. mid-Atlantic region (MAR) is investigated for short- to medium-range forecast lead times (6–168 h). To this end, a regional hydrological ensemble prediction system (RHEPS) is assembled and implemented. The RHEPS in this case comprises the ensemble meteorological forcing, a distributed hydrological model, and a statistical postprocessor. As the meteorological forcing, precipitation, and near-surface temperature outputs from the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System Reforecast, version 2 (GEFSRv2), are used. The Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is used as the distributed hydrological model, and a statistical autoregressive model with an exogenous variable is used as the postprocessor. To verify streamflow forecasts from the RHEPS, eight river basins in the MAR are selected, ranging in drainage area from ~262 to 29 965 km2 and covering some of the major rivers in the MAR. The verification results for the RHEPS show that, at the initial lead times (1–3 days), the hydrological uncertainties have more impact on forecast skill than the meteorological ones. The former become less pronounced, and the meteorological uncertainties dominate, across longer lead times (>3 days). Nonetheless, the ensemble streamflow forecasts remain skillful for lead times of up to 7 days. Additionally, postprocessing increases forecast skills across lead times and spatial scales, particularly for the high-flow conditions. Overall, the proposed RHEPS is able to improve streamflow forecasting in the MAR relative to the deterministic (unperturbed GEFSRv2 member) forecasting case.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alfonso Mejia, amejia@engr.psu.edu
Save
  • Addor, N., S. Jaun, F. Fundel, and M. Zappa, 2011: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): Skill, case studies and scenarios. Hydrol. Earth Syst. Sci., 15, 23272347, doi:10.5194/hess-15-2327-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alemu, E., R. Palmer, A. Polebitski, and B. Meaker, 2011: Decision support system for optimizing reservoir operations using ensemble streamflow predictions. J. Water Resour. Plann. Manage., 137, 7282, doi:10.1061/(ASCE)WR.1943-5452.0000088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, L., F. Pappenberger, F. Wetterhall, T. Haiden, D. Richardson, and P. Salamon, 2014: Evaluation of ensemble streamflow predictions in Europe. J. Hydrol., 517, 913922, doi:10.1016/j.jhydrol.2014.06.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, R. M., V. I. Koren, and S. M. Reed, 2006: Using SSURGO data to improve Sacramento Model a priori parameter estimates. J. Hydrol., 320, 103116, doi:10.1016/j.jhydrol.2005.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anghileri, D., N. Voisin, A. Castelletti, F. Pianosi, B. Nijssen, and D. P. Lettenmaier, 2016: Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments. Water Resour. Res., 52, 42094225, doi:10.1002/2015WR017864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartholmes, J. C., J. Thielen, M. H. Ramos, and S. Gentilini, 2009: The European Flood Alert System EFAS—Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci., 13, 141153, doi:10.5194/hess-13-141-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, J. C., D. E. Robertson, D. L. Shrestha, Q. J. Wang, D. Enever, P. Hapuarachchi, and N. K. Tuteja, 2014: A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days. J. Hydrol., 519, 28322846, doi:10.1016/j.jhydrol.2014.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, M. A., F. Anctil, L. Perreault, and D. Tremblay, 2011: A comparison between ensemble and deterministic hydrological forecasts in an operational context. Adv. Geosci., 29, 8594, doi:10.5194/adgeo-29-85-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, D. P., H. V. Gupta, S. Sorooshian, V. Koren, Z. Zhang, and M. Smith, 2001: Toward improved streamflow forecasts: Value of semidistributed modeling. Water Resour. Res., 37, 27492759, doi:10.1029/2000WR000207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., 2014: Verification of temperature, precipitation and streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service: An evolution of the medium-range forecasts with forcing inputs from NCEP’s Global Ensemble Forecast System (GEFS) and a comparison to the frozen version of NCEP’s Global Forecast System (GFS). Tech. Rep. for the NWS, 139 pp. [Available online at http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2013-09-HEFS_Deliverable_02_Phase_III_report_FINAL.pdf.]

  • Brown, J. D., and D.-J. Seo, 2010: A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts. J. Hydrometeor., 11, 642665, doi:10.1175/2009JHM1188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., J. Demargne, D.-J. Seo, and Y. Liu, 2010: The Ensemble Verification System (EVS): A software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environ. Modell. Software, 25, 854872, doi:10.1016/j.envsoft.2010.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., M. He, S. Regonda, L. Wu, H. Lee, and D.-J. Seo, 2014: Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 2. Streamflow verification. J. Hydrol., 519, 28472868, doi:10.1016/j.jhydrol.2014.05.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., J.-R. Bidlot, N. Wedi, M. Fuentes, M. Hamrud, G. Holt, and F. Vitart, 2007: The new ECMWF VAREPS (Variable Resolution Ensemble Prediction System). Quart. J. Roy. Meteor. Soc., 133, 681695, doi:10.1002/qj.75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnash, R. J., and V. Singh, 1995: The NWS river forecast system—Catchment modeling. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 311–366.

  • Burnash, R. J., R. L. Ferral, and R. A. McGuire, 1973: A generalized streamflow simulation system: Conceptual models for digital computers. Joint Federal and State River Forecast Center, U.S. National Weather Service, and California Department of Water Resources Tech. Rep., 204 pp.

  • Carpenter, T. M., and K. P. Georgakakos, 2006: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J. Hydrol., 329, 174185, doi:10.1016/j.jhydrol.2006.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613626, doi:10.1016/j.jhydrol.2009.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, G., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann. Manage., 111, 157170, doi:10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demargne, J., and Coauthors, 2014: The science of NOAA’s operational Hydrologic Ensemble Forecast Service. Bull. Amer. Meteor. Soc., 95, 7998, doi:10.1175/BAMS-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demeritt, D., S. Nobert, H. Cloke, and F. Pappenberger, 2010: Challenges in communicating and using ensembles in operational flood forecasting. Meteor. Appl., 17, 209222, doi:10.1002/met.194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and M. Rodell, 2013: Water in the balance. Science, 340, 13001301, doi:10.1126/science.1236460.

  • Fan, F. M., W. Collischonn, A. Meller, and L. C. M. Botelho, 2014: Ensemble streamflow forecasting experiments in a tropical basin: The São Francisco River case study. J. Hydrol., 519, 29062919, doi:10.1016/j.jhydrol.2014.04.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K. J., T. S. Hogue, and S. Sorooshian, 2008: Snow model verification using ensemble prediction and operational benchmarks. J. Hydrometeor., 9, 14021415, doi:10.1175/2008JHM995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fundel, F., and M. Zappa, 2011: Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts. Water Resour. Res., 47, W09520, doi:10.1029/2010WR009996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fundel, F., S. Jörg-Hess, and M. Zappa, 2013: Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices. Hydrol. Earth Syst. Sci., 17, 395407, doi:10.5194/hess-17-395-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, A. P., H. Yao, and K. P. Georgakakos, 2014: Ensemble streamflow prediction adjustment for upstream water use and regulation. J. Hydrol., 519, 29522966, doi:10.1016/j.jhydrol.2014.06.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., A. T. Haile, Y. Tian, and R. J. Joyce, 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 17841798, doi:10.1175/JHM-D-12-017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshburger, B. J., V. P. Walden, K. S. Humes, B. C. Moore, T. R. Blandford, and A. Rango, 2012: Generation of ensemble streamflow forecasts using an enhanced version of the snowmelt runoff model. J. Amer. Water Resour. Assoc., 48, 643655, doi:10.1111/j.1752-1688.2012.00642.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., A. A. Bradley, and S. S. Schwartz, 2007: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci., 11, 939950, doi:10.5194/hess-11-939-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and R. S. Schumacher, 2013: Spatial and temporal characteristics of heavy hourly rainfall in the United States. Mon. Wea. Rev., 141, 45644575, doi:10.1175/MWR-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, K. B., K. H. Ritters, J. D. Wickham, R. D. Tankersley Jr., R. V. O’Neill, D. J. Chaloud, E. R. Smith, and A. C. Neale, 1997: An ecological assessment of the United States mid-Atlantic region: A landscape atlas. Tech. Rep. EPA/600/R-97/130, 104 pp.

  • Jörg-Hess, S., N. Griessinger, and M. Zappa, 2015: Probabilistic forecasts of snow water equivalent and runoff in mountainous areas. J. Hydrometeor., 16, 21692186, doi:10.1175/JHM-D-14-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Journel, A. G., and C. J. Huijbregts, 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Kelly, P., 2014: What to do when we run out of water. Nat. Climate Change, 4, 314316, doi:10.1038/nclimate2211.

  • Khan, M., A. Shamseldin, B. Melville, and M. Shoaib, 2015: Stratification of NWP forecasts for medium-range ensemble streamflow forecasting. J. Hydrol. Eng., 20, 04014076, doi:10.1061/(ASCE)HE.1943-5584.0001075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., and Coauthors, 2011: Evolving multisensor precipitation estimation methods: Their impacts on flow prediction using a distributed hydrologic model. J. Hydrometeor., 12, 14141431, doi:10.1175/JHM-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., M. Smith, D. Wang, and Z. Zhang, 2000: Use of soil property data in the derivation of conceptual runoff–runoff model parameters. 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 2.16. [Available online at https://ams.confex.com/ams/annual2000/techprogram/paper_6074.htm.]

  • Koren, V., S. Reed, M. Smith, Z. Zhang, and D.-J. Seo, 2004: Hydrology Laboratory Research Modeling System (HL-RMS) of the US National Weather Service. J. Hydrol., 291, 297318, doi:10.1016/j.jhydrol.2003.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., F. Moreda, S. Reed, M. Smith, and Z. Zhang, 2006: Evaluation of a grid-based distributed hydrological model over a large area. IAHS Publ., 303, 4756.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., V. Lakshmi, K. P. Georgakakos, and S. C. Jain, 1991: A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resour. Res., 27, 119128, doi:10.1029/90WR01977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., 1997: Transformation and normalization of variates with specified distributions. J. Hydrol., 197, 286292, doi:10.1016/S0022-1694(96)03276-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzmin, V. A., 2009: Algorithms of automatic calibration of multi-parameter models used in operational systems of flash flood forecasting. Russ. Meteor. Hydrol., 34, 473481, doi:10.3103/S1068373909070073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzmin, V. A., D.-J. Seo, and V. Koren, 2008: Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search. J. Hydrol., 353, 109128, doi:10.1016/j.jhydrol.2008.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., D.-J. Seo, and V. Koren, 2011: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states. Adv. Water Resour., 34, 15971615, doi:10.1016/j.advwatres.2011.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., Y. Zhang, D.-J. Seo, and P. Xie, 2015: Utilizing satellite precipitation estimates for streamflow forecasting via adjustment of mean field bias in precipitation data and assimilation of streamflow observations. J. Hydrol., 529, 779794, doi:10.1016/j.jhydrol.2015.08.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Madadgar, S., H. Moradkhani, and D. Garen, 2014: Towards improved post-processing of hydrologic forecast ensembles. Hydrol. Processes, 28, 104122, doi:10.1002/hyp.9562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maupin, M. A., J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and K. S. Linsey, 2014: Estimated use of water in the United States in 2010. USGS Circular 1405, 56 pp. [Available online at https://pubs.usgs.gov/circ/1405/pdf/circ1405.pdf.]

    • Crossref
    • Export Citation
  • McCuen, R. H., and W. M. Snyder, 1975: A proposed index for comparing hydrographs. Water Resour. Res., 11, 10211024, doi:10.1029/WR011i006p01021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejia, A. I., and S. M. Reed, 2011: Evaluating the effects of parameterized cross section shapes and simplified routing with a coupled distributed hydrologic and hydraulic model. J. Hydrol., 409, 512524, doi:10.1016/j.jhydrol.2011.08.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, M. M., and A. Y. Hoekstra, 2016: Four billion people facing severe water scarcity. Sci. Adv., 2, e1500323, doi:10.1126/sciadv.1500323.

  • Michaud, J., and S. Sorooshian, 1994: Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed. Water Resour. Res., 30, 593605, doi:10.1029/93WR03218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, doi:10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: HL User Manuals and On-line Documentation. Accessed October 2016. [Available online at http://www.nws.noaa.gov/ohd/hrl/general/indexdoc.htm.]

  • Olsson, J., and G. Lindström, 2008: Evaluation and calibration of operational hydrological ensemble forecasts in Sweden. J. Hydrol., 350, 1424, doi:10.1016/j.jhydrol.2007.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, T. C., D. L. Shrestha, Q. J. Wang, D. Robertson, and P. Hapuarachchi, 2013: Ensemble dressing for hydrological applications. Hydrol. Processes, 27, 106116, doi:10.1002/hyp.9313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, doi:10.5194/hess-19-2037-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafieeinasab, A., D.-J. Seo, H. Lee, and S. Kim, 2014: Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of streamflow data into operational hydrologic models. J. Hydrol., 519, 26632675, doi:10.1016/j.jhydrol.2014.06.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafieeinasab, A., A. Norouzi, D.-J. Seo, and B. Nelson, 2015a: Improving high-resolution quantitative precipitation estimation via fusion of multiple radar-based precipitation products. J. Hydrol., 531, 320336, doi:10.1016/j.jhydrol.2015.04.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafieeinasab, A., and Coauthors, 2015b: Toward high-resolution flash flood prediction in large urban areas—Analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. J. Hydrol., 531, 370388, doi:10.1016/j.jhydrol.2015.08.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, M. H., S. J. Van Andel, and F. Pappenberger, 2013: Do probabilistic forecasts lead to better decisions? Hydrol. Earth Syst. Sci., 17, 22192232, doi:10.5194/hess-17-2219-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, P. M., and Coauthors, 2006: Bridging river basin scales and processes to assess human‐climate impacts and the terrestrial hydrologic system. Water Resour. Res., 42, W07418, doi:10.1029/2005WR004153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.-J. Seo, and D. Participants, 2004: Overall Distributed Model Intercomparison Project results. J. Hydrol., 298, 2760, doi:10.1016/j.jhydrol.2004.03.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., D.-J. Seo, B. Lawrence, J. D. Brown, and J. Demargne, 2013: Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts—A Hydrologic Model Output Statistics (HMOS) approach. J. Hydrol., 497, 8096, doi:10.1016/j.jhydrol.2013.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulin, E., 2007: Skill and relative economic value of medium-range hydrological ensemble predictions. Hydrol. Earth Syst. Sci., 11, 725737, doi:10.5194/hess-11-725-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulin, E., and S. Vannitsem, 2015: Post-processing of medium-range probabilistic hydrological forecasting: Impact of forcing, initial conditions and model errors. Hydrol. Processes, 29, 14341449, doi:10.1002/hyp.10259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., K. Franz, A. Bradley, and R. Buizza, 2006: The Hydrologic Ensemble Prediction EXperiment (HEPEX). Hydrol. Earth Syst. Sci. Discuss., 3, 33213332, doi:10.5194/hessd-3-3321-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., T. M. Hamill, R. Buizza, and M. Clark, 2007: HEPEX: The Hydrological Ensemble Prediction Experiment. Bull. Amer. Meteor. Soc., 88, 15411547, doi:10.1175/BAMS-88-10-1541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schellekens, J., A. H. Weerts, R. J. Moore, C. E. Pierce, and S. Hildon, 2011: The use of MOGREPS ensemble rainfall forecasts in operational flood forecasting systems across England and Wales. Adv. Geosci., 29, 7784, doi:10.5194/adgeo-29-77-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., and Coauthors, 2017: Eastern U.S. verification of ensemble precipitation forecasts. Wea. Forecasting, 32, 117139, doi:10.1175/WAF-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddique, R., A. Mejia, J. Brown, S. Reed, and P. Ahnert, 2015: Verification of precipitation forecasts from two numerical weather prediction models in the middle Atlantic region of the USA: A precursory analysis to hydrologic forecasting. J. Hydrol., 529, 13901406, doi:10.1016/j.jhydrol.2015.08.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. B., D.-J. Seo, V. I. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Moreda, and S. Cong, 2004: The Distributed Model Intercomparison Project (DMIP): Motivation and experiment design. J. Hydrol., 298, 426, doi:10.1016/j.jhydrol.2004.03.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2012: The Distributed Model Intercomparison Project—Phase 2: Motivation and design of the Oklahoma experiments. J. Hydrol., 418–419, 316, doi:10.1016/j.jhydrol.2011.08.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and V. K. Gupta, 1983: Automatic calibration of conceptual rainfall–runoff models: The question of parameter observability and uniqueness. Water Resour. Res., 19, 260268, doi:10.1029/WR019i001p00260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spies, R. R., K. J. Franz, T. S. Hogue, and A. L. Bowman, 2015: Distributed hydrologic modeling using satellite-derived potential evapotranspiration. J. Hydrometeor., 16, 129146, doi:10.1175/JHM-D-14-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., P. Reed, and T. Wagener, 2006: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci., 10, 289307, doi:10.5194/hess-10-289-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., P. Reed, K. Van Werkhoven, and T. Wagener, 2007: Advancing the identification and evaluation of distributed rainfall–runoff models using global sensitivity analysis. Water Resour. Res., 43, W06415, doi:10.1029/2006WR005813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thielen, J., J. Bartholmes, M. H. Ramos, and A. de Roo, 2009: The European Flood Alert System—Part 1: Concept and development. Hydrol. Earth Syst. Sci., 13, 125140, doi:10.5194/hess-13-125-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorstensen, A., P. Nguyen, K. Hsu, and S. Sorooshian, 2016: Using densely distributed soil moisture observations for calibration of a hydrologic model. J. Hydrometeor., 17, 571590, doi:10.1175/JHM-D-15-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Andel, S. J., A. Weerts, J. Schaake, and K. Bogner, 2013: Post-processing hydrological ensemble predictions intercomparison experiment. Hydrol. Processes, 27, 158161, doi:10.1002/hyp.9595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Cooten, S., and Coauthors, 2011: The CI-FLOW project: A system for total water level prediction from the summit to the sea. Bull. Amer. Meteor. Soc., 92, 1427, doi:10.1175/2011BAMS3150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Steenbergen, N., J. Ronsyn, and P. Willems, 2012: A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication. Environ. Modell. Software, 33, 92105, doi:10.1016/j.envsoft.2012.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang, 2008: Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res., 44, W01429, doi:10.1029/2007WR006271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbunt, M., A. Walser, J. Gurtz, A. Montani, and C. Schär, 2007: Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeor., 8, 897909, doi:10.1175/JHM594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers, 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288, doi:10.1126/science.289.5477.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., and Coauthors, 2013: HESS Opinions “Forecaster priorities for improving probabilistic flood forecasts.” Hydrol. Earth Syst. Sci., 17, 43894399, doi:10.5194/hess-17-4389-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2015: Multivariate ensemble model output statistics using empirical copulas. Quart. J. Roy. Meteor. Soc., 141, 945952, doi:10.1002/qj.2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and J. C. Schaake, 2008: Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeor., 9, 132148, doi:10.1175/2007JHM862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., T. Hopson, A. Newman, L. Brekke, J. Arnold, and M. Clark, 2016: Quantifying streamflow forecast skill elasticity to initial condition and climate prediction skill. J. Hydrometeor., 17, 651668, doi:10.1175/JHM-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xuan, Y., I. D. Cluckie, and Y. Wang, 2009: Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction. Hydrol. Earth Syst. Sci., 13, 293303, doi:10.5194/hess-13-293-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, and M. Liang, 2014: Integrating weather and climate prediction: Toward seamless hydrologic forecasting. Geophys. Res. Lett., 41, 58915896, doi:10.1002/2014GL061076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zalachori, I., M. H. Ramos, R. Garçon, T. Mathevet, and J. Gailhard, 2012: Statistical processing of forecasts for hydrological ensemble prediction: A comparative study of different bias correction strategies. Adv. Sci. Res., 8, 135141, doi:10.5194/asr-8-135-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 641 155 11
PDF Downloads 486 99 8