Bias Correction of Climate Modeled Temperature and Precipitation Using Artificial Neural Networks

Sanaz Moghim Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

Search for other papers by Sanaz Moghim in
Current site
Google Scholar
PubMed
Close
and
Rafael L. Bras School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Rafael L. Bras in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate studies and effective environmental management require unbiased climate datasets. This study develops a new bias correction approach using a three-layer feedforward neural network to reduce the biases of climate variables (temperature and precipitation) over northern South America. Air and skin temperature, specific humidity, and net longwave and shortwave radiation are used as inputs to the network for bias correction of 6-hourly temperature. Inputs to the network for bias correction of monthly precipitation are precipitation at lag 0, 1, 2, and 3 months, and also the standard deviation of precipitation from 3 × 3 neighbors around the pixel of interest. The climate model data are provided by the Community Climate System Model, version 3 (CCSM3). Results show that the trained artificial neural network (ANN) can improve the estimation error and correlation of the variables for both calibration and validation periods even when there is a low temporal consistency between the time series of the model data and targets. The developed model is also able to modify the probabilistic structure of the variables although the quantile-based information is not directly considered in the network. The ANN model outperforms linear regression, which is used for comparison purposes. The new method can be used to produce bias-corrected climate variables that can be used as forcing to hydrological and ecological models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sanaz Moghim, moghim@sharif.edu

Abstract

Climate studies and effective environmental management require unbiased climate datasets. This study develops a new bias correction approach using a three-layer feedforward neural network to reduce the biases of climate variables (temperature and precipitation) over northern South America. Air and skin temperature, specific humidity, and net longwave and shortwave radiation are used as inputs to the network for bias correction of 6-hourly temperature. Inputs to the network for bias correction of monthly precipitation are precipitation at lag 0, 1, 2, and 3 months, and also the standard deviation of precipitation from 3 × 3 neighbors around the pixel of interest. The climate model data are provided by the Community Climate System Model, version 3 (CCSM3). Results show that the trained artificial neural network (ANN) can improve the estimation error and correlation of the variables for both calibration and validation periods even when there is a low temporal consistency between the time series of the model data and targets. The developed model is also able to modify the probabilistic structure of the variables although the quantile-based information is not directly considered in the network. The ANN model outperforms linear regression, which is used for comparison purposes. The new method can be used to produce bias-corrected climate variables that can be used as forcing to hydrological and ecological models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sanaz Moghim, moghim@sharif.edu
Save
  • Alexander, G. D., J. A. Weinman, and J. L. Schols, 1998: The use of digital warping of microwave integrated water vapor imagery to improve forecasts of marine extratropical cyclones. Mon. Wea. Rev., 126, 14691496, doi:10.1175/1520-0493(1998)126<1469:TUODWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. C. L. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Wea. Rev., 127, 14331457, doi:10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aragao, L., Y. Malhi, N. Barbier, L. Anderson, S. Saatchi, and E. Shimabukuro, 2008: Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. Roy. Soc. London, B363, 17791785, doi:10.1098/rstb.2007.0026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ASCE Task Committee, 2000: Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng., 5, 115137, doi:10.1061/(ASCE)1084-0699(2000)5:2(115).

    • Search Google Scholar
    • Export Citation
  • Berg, A. A., J. S. Famiglietti, J. P. Walker, and P. R. Houser, 2003: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. Geophys. Res. Lett., 108, 4490, doi:10.1029/2002JD003334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blum, E. K., and L. K. Li, 1991: Approximation theory and feedforward networks. Neural Networks, 4, 511515, doi:10.1016/0893-6080(91)90047-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a Dynamic Global Vegetation Model. J. Climate, 19, 22902301, doi:10.1175/JCLI3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burger, G., 1996: Expanded downscaling for generating local weather scenarios. Climate Res., 7, 111128, doi:10.3354/cr007111.

  • Bush, M. B., M. R. Silman, C. McMichael, A. Restrepo-Correa, D. H. Urrego, A. Correa, and S. Saatchi, 2008: Fire, climate change and biodiversity in Amazonia: A late-Holocene perspective. Philos. Trans. Roy. Soc. London, B363, 17951802, doi:10.1098/rstb.2007.0014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, R., 2006: Amazon destruction. Accessed 22 May 2017. [Available online at http://rainforests.mongabay.com/amazon/amazon_destruction.html.]

  • Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87 (Suppl.), 2142, doi:10.1007/s10584-007-9377-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-Y., J. A. Carton, S. A. Grodsky, and S. Nigam, 2007: Seasonal climate of the tropical Atlantic sector in the NCAR Community Climate System model 3: Error structure and probable causes of errors. J. Climate, 20, 10531070, doi:10.1175/JCLI4047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 41874205, doi:10.1002/wrcr.20331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Cochrane, M. A., and C. P. Barber, 2009: Climate change, human land use and future fires in the Amazon. Global Change Biol., 15, 601612, doi:10.1111/j.1365-2486.2008.01786.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

  • Costa, M. H., and G. F. Pires, 2010: Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol., 30, 19701979, doi:10.1002/joc.2048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crane, R. G., and B. C. Hewitson, 1998: Doubled CO2 precipitation changes for the Susquehanna basin: Down-scaling from the GENESIS general circulation model. Int. J. Climatol., 18, 6576, doi:10.1002/(SICI)1097-0088(199801)18:1<65::AID-JOC222>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001a: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14, 10921111, doi:10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001b: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Durbin, R., and D. E. Rumelhart, 1989: Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput., 1, 133142, doi:10.1162/neco.1989.1.1.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funahashi, K. I., 1989: On the approximation realization of continuous mapping by neural networks. Neural Networks, 2, 183192, doi:10.1016/0893-6080(89)90003-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations the CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassoun, M. H., 1995: Fundamentals of Artificial Neural Networks. MIT Press, 511 pp.

  • Hayhoe, K., and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht-Nielsen, R., 1990: Neurocomputing. Addison-Wesley,433 pp.

  • Hidalgo, H. G., M. D. Dettinger, and D. R. Cayan, 2008: Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. California Energy Commission PIER Final Project Rep. CEC-500-2007-123, 48 pp. [Available online at http://www.energy.ca.gov/2007publications/CEC-500-2007-123/CEC-500-2007-123.PDF.]

  • Hoffman, R., Z. Liu, J. Louis, and C. Grassotti, 1995: Distortion representation of forecast errors. Mon. Wea. Rev., 123, 27582770, doi:10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornik, K., 1989: Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359366, doi:10.1016/0893-6080(89)90020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornik, K., 1991: Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 251257, doi:10.1016/0893-6080(91)90009-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. M., V. Gornitz, D. A. Bader, A. C. Ruane, R. Goldberg, and C. Rosenzweig, 2011: Climate hazard assessment for stakeholder adaptation planning in New York City. J. Appl. Meteor. Climatol., 50, 22472266, doi:10.1175/2011JAMC2521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., H. V. Gupta, and S. Sorooshian, 1995: Artificial neural network modeling of the rainfall–runoff process. Water Resour. Res., 31, 25172530, doi:10.1029/95WR01955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1996: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., H. V. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35, 16051618, doi:10.1029/1999WR900032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., and J. W. Hansen, 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteor., 138, 4453, doi:10.1016/j.agrformet.2006.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Joorabchi, A., H. Zhang, and M. Blumenstein, 2007: Application of artificial neural networks inflow discharge prediction for the Fitzroy River, Australia. J. Coastal Res., SI50, 287291.

    • Search Google Scholar
    • Export Citation
  • Khotanzad, A., R. Afkhami-Rohani, T.-L. Lu, A. Abaye, M. Davis, and D. J. Maratukulam, 1997: ANNSTLF—A neural-network-based electric load forecasting system. IEEE Trans. Neural Networks, 8, 835846, doi:10.1109/72.595881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretzschmar, R., P. Eckert, D. Cattani, and F. Eggimann, 2004: Neural network classifiers for local wind prediction. J. Appl. Meteor., 43, 727738, doi:10.1175/2057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., and A. P. Barros, 1998a: Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Wea. Rev., 126, 470482, doi:10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., and A. P. Barros, 1998b: Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Wea. Forecasting, 13, 11941204, doi:10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, T.-Y., and D. Y. Yeung, 1997: Objective functions for training new hidden units in constructive neural networks. IEEE Trans. Neural Networks, 8, 11311148, doi:10.1109/72.623214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachtermacher, G., and J. D. Fuller, 1994: Backpropagation in hydrological time series forecasting. Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Water Science and Technology Library, Vol. 10/3, Springer, 229–242, doi:10.1007/978-94-017-3083-9_18.

    • Crossref
    • Export Citation
  • Levy, A. A. L., M. Jenkinson, W. Ingram, F. H. Lambert, C. Huntingford, and M. Allen, 2014a: Correcting precipitation feature location in general circulation models. J. Geophys. Res. Atmos., 119, 13 35013 369, doi:10.1002/2014JD022357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, A. A. L., M. Jenkinson, W. Ingram, F. H. Lambert, C. Huntingford, and M. Allen, 2014b: Increasing the detectability of external influence on precipitation by correcting feature location in GCMs. J. Geophys. Res. Atmos., 119, 12 46612 478, doi:10.1002/2014JD02235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. C., and D. Zheng, 2003: Applications of artificial neural networks to geosciences: Review and prospect (in Chinese). Adv. Earth Sci., 18, 6876.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. Peng, W. Xiang, D. Tian, X. Deng, and M. Zhao, 2010: Application of artificial neural networks in global climate change and ecological research: An overview. Chin. Sci. Bull., 55, 38533863, doi:10.1007/s11434-010-4183-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maier, H. R., and G. C. Dandy, 1998: The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study. Environ. Modell. Software, 13, 193209, doi:10.1016/S1364-8152(98)00020-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maier, H. R., and G. C. Dandy, 2000: Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Modell. Software, 15, 101124, doi:10.1016/S1364-8152(99)00007-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maier, H. R., A. Jain, G. C. Dandy, and K. P. Sudheer, 2010: Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Modell. Software, 25, 891909, doi:10.1016/j.envsoft.2010.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and Coauthors, 2009: Exploring the likelihood and mechanism of a climate change–induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 106, 20 61020 615, doi:10.1073/pnas.0804619106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., 2003: Neural networks for postprocessing model output: ARPS. Mon. Wea. Rev., 131, 11031111, doi:10.1175/1520-0493(2003)131<1103:NNFPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Master, T., 1993: Practical Neural Network Recipes in C++. Academic Press, 493 pp.

  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, D. B., and M. Sivakumar, 2009: Prediction of urban stormwater quality using artificial neural networks. Environ. Modell. Software, 24, 296302, doi:10.1016/j.envsoft.2008.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and G. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Climate Dyn., 26, 549566, doi:10.1007/s00382-005-0098-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moghim, S., 2015: Bias correction of global circulation model outputs using artificial neural networks. Ph.D. thesis, Dept. of Civil and Environmental Engineering, Georgia Institute of Technology, 278 pp. [Available online at http://hdl.handle.net/1853/55487.]

  • Moghim, S., S. L. McKnight, K. Zhang, A. M. Ebtehaj, R. G. Knox, R. L. Bras, P. R. Moorcroft, and J. Wang, 2017: Bias-corrected data sets of climate model outputs at uniform space–time resolution for land surface modelling over Amazonia. Int. J. Climatol., 37, 621636, doi:10.1002/joc.4728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., R. N. Hoffman, C. Grassotti, and J.-F. Louis, 2003: Feature calibration and alignment to represent model forecast errors: Empirical regularization. Quart. J. Roy. Meteor. Soc., 129, 195218, doi:10.1256/qj.02.18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Application of Statistics to Meteorology. Pennsylvania State University Press, 224 pp.

  • Rocha, M., P. Cortez, and J. Neves, 2005: Simultaneous evolution of neural network topologies and weights for classification and regression. Computational Intelligence and Bioinspired Systems: IWANN 2005, J. Cabestany, A. Prieto, and F. Sandoval, Eds., Lecture Notes in Computer Science, Vol. 3512, Springer, 59–66, doi:10.1007/11494669_8.

    • Crossref
    • Export Citation
  • Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. C. Jr, 2003: Improving snowfall forecasting by diagnosing snow density. Wea. Forecasting, 18, 264287, doi:10.1175/1520-0434(2003)018<0264:ISFBDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rumelhart, D. E., 1995: Backpropagation: Theory, Architectures, and Applications. Y. Chauvin, 561 pp.

  • Rumelhart, D. E., G. E. Hintont, and R. J. Williams, 1986: Learning representations by back-propagation errors. Nature, 323, 533536, doi:10.1038/323533a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schalkoff, R. J., 1990: Artificial Intelligence: An Engineering Approach. McGraw-Hill, 640 pp.

  • Schalkoff, R. J., 1997: Artificial Neural Network. McGraw-Hill, 422 pp.

  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S. I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, 2003: A simulation of the last glacial maximum climate using the NCAR-CCSM. Climate Dyn., 20, 127151, doi:10.1007/s00382-002-0260-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, Y., 1993: Generalization and approximation capabilities of multi-layer networks. Neural Comput., 5, 132139, doi:10.1162/neco.1993.5.1.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, S. I., and M. Tateishi, 1997: Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural Networks, 8, 251255, doi:10.1109/72.557662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taormina, R., K. Chau, and R. Sethi, 2012: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell., 25, 16701676, doi:10.1016/j.engappai.2012.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, doi:10.1016/j.jhydrol.2012.05.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1999: On the use of “inflation” in statistical downscaling. J. Climate, 12, 35053506, doi:10.1175/1520-0442(1999)012<3505:OTUOII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, H., 1990: Connectionist nonparameteric regression: Multi-layer feed forward networks can learn arbitrary mappings. Neural Networks, 3, 535549, doi:10.1016/0893-6080(90)90004-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., X. Gao, S. L. Mullen, S. Sorooshian, J. Du, and H.-M. H. Juang, 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 12871303, doi:10.1175/2007WAF2006114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and A. P. Georgakakos, 2012: Joint variable spatial downscaling. Climatic Change, 111, 945972, doi:10.1007/s10584-011-0167-9.

  • Zhang, K., and Coauthors, 2015: The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use. Global Change Biol., 21, 2569–2587, doi:10.1111/gcb.12903.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1908 457 31
PDF Downloads 1885 339 47