Warming Water in Arctic Terrestrial Rivers under Climate Change

Hotaek Park Institute of Arctic Climate and Environment Research, JAMSTEC, Yokosuka, and Institute for Space–Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Hotaek Park in
Current site
Google Scholar
PubMed
Close
,
Yasuhiro Yoshikawa Department of Civil and Environmental Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan

Search for other papers by Yasuhiro Yoshikawa in
Current site
Google Scholar
PubMed
Close
,
Daqing Yang National Hydrology Research Centre, Environment Canada, Saskatoon, Saskatchewan, Canada

Search for other papers by Daqing Yang in
Current site
Google Scholar
PubMed
Close
, and
Kazuhiro Oshima Institute of Arctic Climate and Environment Research, JAMSTEC, Yokosuka, Japan

Search for other papers by Kazuhiro Oshima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent years have seen an obvious warming trend in the Arctic. Streamflow and water temperature Tw are important parameters representing the changes of Arctic rivers under climate change. However, few quantitative assessments of changes in river Tw have been conducted at the pan-Arctic scale. To carry out such an assessment, this study used a modeling framework combining a land process model [the coupled hydrological and biogeochemical model (CHANGE)] with models of river discharge Q, ice cover, and Tw dynamics. The Tw model was improved by incorporating heat exchange at the air–water interface and heat advection from upstream through the channel network. The model was applied to pan-Arctic terrestrial rivers flowing into the Arctic Ocean over the period 1979–2013 and quantitatively assessed trends of Tw at regional and pan-Arctic scales. The simulated Tw values were consistent with observations at the mouths of major pan-Arctic rivers. The model simulations indicated a warming trend of Tw by 0.16°C decade−1 at the outlets of the pan-Arctic rivers, including widespread spatial warming consistent with increased air temperature Ta. The strong impact of Ta on Tw was verified by model sensitivity analysis based on various scenarios involving changes in the Ta and Q forcings. Finally, this study demonstrated the warming of Tw in Arctic rivers induced by Ta warming, suggesting the potential for warming Tw of Arctic rivers under future climate change scenarios.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0260.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hotaek Park, park@jamstec.go.jp

Abstract

Recent years have seen an obvious warming trend in the Arctic. Streamflow and water temperature Tw are important parameters representing the changes of Arctic rivers under climate change. However, few quantitative assessments of changes in river Tw have been conducted at the pan-Arctic scale. To carry out such an assessment, this study used a modeling framework combining a land process model [the coupled hydrological and biogeochemical model (CHANGE)] with models of river discharge Q, ice cover, and Tw dynamics. The Tw model was improved by incorporating heat exchange at the air–water interface and heat advection from upstream through the channel network. The model was applied to pan-Arctic terrestrial rivers flowing into the Arctic Ocean over the period 1979–2013 and quantitatively assessed trends of Tw at regional and pan-Arctic scales. The simulated Tw values were consistent with observations at the mouths of major pan-Arctic rivers. The model simulations indicated a warming trend of Tw by 0.16°C decade−1 at the outlets of the pan-Arctic rivers, including widespread spatial warming consistent with increased air temperature Ta. The strong impact of Ta on Tw was verified by model sensitivity analysis based on various scenarios involving changes in the Ta and Q forcings. Finally, this study demonstrated the warming of Tw in Arctic rivers induced by Ta warming, suggesting the potential for warming Tw of Arctic rivers under future climate change scenarios.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0260.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hotaek Park, park@jamstec.go.jp

Supplementary Materials

    • Supplemental Materials (PDF 1.41 MB)
Save
  • Adam, J. C., and D. P. Lettenmaier, 2008: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. J. Climate, 21, 18071828, doi:10.1175/2007JCLI1535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alkire, M. B., A. D. Jacobson, G. O. Lehn, and R. W. Macdonald, 2015: Small rivers could have big impact on Arctic Ocean. Eos, Trans. Amer. Geophys. Union, 96, doi:10.1029/2015EO034005.

    • Search Google Scholar
    • Export Citation
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 3888–3906, doi:10.1175/2010JCLI3297.1.

    • Crossref
    • Export Citation
  • Caissie, D., 2006: The thermal regime of rivers: A review. Freshwater Biol., 51, 13891406, doi:10.1111/j.1365-2427.2006.01597.x.

  • Caissie, D., M. G. Satish, and N. El-Jabi, 2007: Predicting water temperature using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). J. Hydrol., 336, 303315, doi:10.1016/j.jhydrol.2007.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edinger, J. E., D. W. Duttweiler, and J. G. Geyer, 1968: Response of water temperatures to meteorological conditions. Water Resour. Res., 4, 11371143, doi:10.1029/WR004i005p01137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., Y. Luo, I. T. Stewart, and E. P. Maurer, 2012: Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resour. Res., 48, W01511, doi:10.1029/2011WR011256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., A. I. Shiklomanov, S. E. Tank, J. W. McClelland, and M. Tretiakov, 2015: River discharge. Arctic Report Card 2015, M. O. Jeffries, J. Richter-Menge, and J. E. Overland, Eds., NOAA Tech. Doc., 60–65. [Available online at ftp://ftp.oar.noaa.gov/arctic/documents/ArcticReportCard_full_report2015.pdf.]

  • Janout, M., and Coauthors, 2016: Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf. Geophys. Res. Lett., 43, 264272, doi:10.1002/2015GL066565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lammers, R. B., J. W. Pundsack, and A. I. Shiklomanov, 2007: Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. J. Geophys. Res., 112, G04S59, doi:10.1029/2006JG000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesack, L. F. W., P. Marsh, F. E. Hicks, and D. L. Forbes, 2014: Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys. Res. Lett., 41, 15601566, doi:10.1002/2013GL058761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., D. Yang, B. Ye, and S. Berezovskaya, 2005: Long-term open-water season stream temperature variations and changes over Lena River basin in Siberia. Global Planet. Change, 48, 96111, doi:10.1016/j.gloplacha.2004.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., T. Oki, and S. Kanae, 2007: A variable streamflow velocity method for global river routing model: Model description and preliminary results. Hydrol. Earth Syst. Sci. Discuss., 4, 43894414, doi:10.5194/hessd-4-4389-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and Y. C. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., E. Hanna, I. Hanssen-Bauer, S.-J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman, 2015: Surface air temperature. Arctic Report Card 2015, M. O. Jeffries, J. Richter-Menge, and J. E. Overland, Eds., NOAA Tech. Doc., 10–16. [Available online at ftp://ftp.oar.noaa.gov/arctic/documents/ArcticReportCard_full_report2015.pdf.]

  • Park, H., Y. Iijima, H. Yabuki, T. Ohta, J. Walsh, Y. Kodama, and T. Ohata, 2011: The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia. J. Geophys. Res., 116, D15102, doi:10.1029/2010JD015386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., J. Walsh, A. N. Fedorov, A. B. Sherstiukov, Y. Iijima, and T. Ohata, 2013: The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds. Cryosphere, 7, 631645, doi:10.5194/tc-7-631-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., A. N. Fedorov, M. N. Zheleznyak, P. Y. Konstantinov, and J. E. Walsh, 2015: Effect of snow cover on pan-Arctic permafrost thermal regimes. Climate Dyn., 44, 28732895, doi:10.1007/s00382-014-2356-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., Y. Yoshikawa, K. Oshima, Y. Kim, T. Ngo-Duc, J. S. Kimbal, and D. Yang, 2016: Quantification of warming climate–induced changes in terrestrial Arctic river ice thickness and phenology. J. Climate, 29, 17331754, doi:10.1175/JCLI-D-15-0569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D. L., and T. D. Prowse, 2001: Regulation effects on the lower Peace River, Canada. Hydrol. Processes, 15, 31813194, doi:10.1002/hyp.321.

  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 21712173, doi:10.1126/science.1077445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prowse, T., A. Bring, J. Mård, E. Carmack, M. Holland, A. Instanes, T. Vihma, and F. J. Wrona, 2015: Arctic Freshwater Synthesis: Summary of key emerging issues. J. Geophys. Res. Biogeosci., 120, 18871893, doi:10.1002/2015JG003128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, doi:10.1029/2005JC003424.

  • Shiklomanov, A. I., R. B. Lammers, L. Smith, T. Pavelsky, and M. Rawlins, 2007: Temporal and spatial variations in maximum discharge from a new river flow data set for the Eurasian pan-Arctic. J. Geophys. Res., 112, G04S53, doi:10.1029/2006JF000571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinokrot, B. A., and H. G. Stefan, 1993: Stream temperature dynamics: Measurements and modeling. Water Resour. Res., 29, 22992312, doi:10.1029/93WR00540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. C., T. M. Pavelsky, G. M. MacDonald, A. I. Shiklomanov, and R. B. Lammers, 2007: Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res., 112, G04S47, doi:10.1029/2006JD007574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefan, H. G., and E. B. Preud’homme, 1993: Stream temperature estimation from air temperature. J. Amer. Water Resour. Assoc., 29, 2745, doi:10.1111/j.1752-1688.1993.tb01502.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Beek, L. P. H., T. Eikelboom, M. T. H. van Vliet, and M. F. P. Bierkens, 2012: A physically based model of global freshwater surface temperature. Water Resour. Res., 48, W09530, doi:10.1029/2012WR011819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vliet, M. T. H., F. Ludwig, J. J. G. Zwolsman, G. P. Weedon, and P. Kabat, 2011: Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res., 47, W02544, doi:10.1029/2010WR009198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vliet, M. T. H., J. R. Yearsley, W. H. P. Franssen, F. Ludwig, I. Haddeland, D. P. Lettenmaier, and P. Kabat, 2012: Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci., 16, 43034321, doi:10.5194/hess-16-4303-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, B. W., D. M. Hannah, R. D. Moore, L. E. Brown, and F. Nobilis, 2008: Recent advances in stream and river temperature research. Hydrol. Processes, 22, 902918, doi:10.1002/hyp.6994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, doi:10.1002/2014WR015638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitefield, J., P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean Modell., 88, 115, doi:10.1016/j.ocemod.2014.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunderlich, W. O., and R. Gras, 1967: Heat and mass transfer between a water surface and the atmosphere. Water Resources Research Laboratory Rep. 14, Tennessee Valley Authority, 270 pp.

  • Yang, D., and A. Peterson, 2017: River water temperature in relation to local air temperature in Mackenzie and Yukon basins. Arctic, 70, 4758, doi:10.14430/arctic4627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Ye, and D. L. Kane, 2004a: Streamflow changes over Siberian Yenisei River basin. J. Hydrol., 296, 5980, doi:10.1016/j.jhydrol.2004.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Ye, and A. Shiklomanov, 2004b: Discharge characteristics and changes over the Ob River watershed in Siberia. J. Hydrometeor., 5, 595610, doi:10.1175/1525-7541(2004)005<0595:DCACOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Liu, and B. Ye, 2005: Stream temperature changes over Lena River basin in Siberia. Geophys. Res. Lett., 32, L05401, doi:10.1029/2004GL021568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Y. Zhao, R. Armstrong, D. Robinson, and M.-J. Brodzik, 2007: Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J. Geophys. Res., 112, F02S22, doi:10.1029/2006JF000518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., P. Marsh, and S. Ge, 2014: Heat flux calculations for Mackenzie and Yukon Rivers. Polar Sci., 8, 232241, doi:10.1016/j.polar.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., X. Shi, and P. Marsh, 2015: Variability and extreme of Mackenzie River daily discharge during 1973–2011. Quat. Int., 380–381, 159168, doi:10.1016/j.quaint.2014.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 187 13
PDF Downloads 575 143 5