The Impact of Error Accounting in a Bayesian Approach to Calibrating Modeled Turbulent Fluxes in an Open-Canopy Forest

Tony E. Wong Department of Applied Mathematics, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Tony E. Wong in
Current site
Google Scholar
PubMed
Close
,
William Kleiber Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by William Kleiber in
Current site
Google Scholar
PubMed
Close
, and
David C. Noone Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by David C. Noone in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.

Current affiliation: Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania.

Current affiliation: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-17-0030.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tony Wong, twong@psu.edu

Abstract

Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.

Current affiliation: Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania.

Current affiliation: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-17-0030.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tony Wong, twong@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.00 MB)
Save
  • Abbaspour, K. C., E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang, and B. Kløve, 2015: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol., 524, 733752, doi:10.1016/j.jhydrol.2015.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., B. B. Hicks, and P. Camara, 1987: A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ., 21, 91101, doi:10.1016/0004-6981(87)90274-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., B. B. Hicks, and T. P. Meyers, 1988: Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 13311340, doi:10.2307/1941631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J., 1988: An analysis of stomatal conductance. Ph.D. thesis, Stanford University, 145 pp.

  • Ball, J., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, Vol. 4, J. Biggins, Ed., Martinus Nijhoff, 221–224, doi:10.1007/978-94-017-0519-6_48.

    • Crossref
    • Export Citation
  • Berkelhammer, M., and Coauthors, 2013: The nocturnal water cycle in an open-canopy forest. J. Geophys. Res. Atmos., 118, 10 22510 242, doi:10.1002/jgrd.50701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berkelhammer, M., D. C. Noone, T. E. Wong, S. P. Burns, J. F. Knowles, A. Kaushik, P. D. Blanken, and M. W. Williams, 2016: Convergent approaches to determine an ecosystem’s transpiration fraction. Global Biogeochem. Cycles, 30, 933951, doi:10.1002/2016GB005392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, R. A. Fisher, G. Lasslop, and M. Reichstein, 2012: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. J. Geophys. Res., 117, G02026, doi:10.1029/2011JG001913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, doi:10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, N. N., B. P. Mohanty, and E. G. Njoku, 2008: A Markov chain Monte Carlo algorithm for upscaled soil–vegetation–atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements. Water Resour. Res., 44, W05416, doi:10.1029/2007WR006472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauzat, J., B. Rapidel, and A. Berger, 2001: Simulation of leaf transpiration and sap flow in virtual plants: Model description and application to a coffee plantation in Costa Rica. Agric. For. Meteor., 109, 143160, doi:10.1016/S0168-1923(01)00236-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiGangi, J. P., and Coauthors, 2011: First direct measurements of formaldehyde flux via eddy covariance: Implications for missing in-canopy formaldehyde sources. Atmos. Chem. Phys., 11, 10 56510 578, doi:10.5194/acp-11-10565-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunin, F. X., 1991: Extrapolation of point measurements of evaporation: Some issues of scale. Vegetatio, 91, 3947, doi:10.1007/BF00036046.

    • Search Google Scholar
    • Export Citation
  • Ehleringer, J. R., and C. B. Field, Eds., 1993: Scaling Physiological Processes: Leaf to Globe. Academic Press, 388 pp.

  • Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543, doi:10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., and D. B. Rubin, 1992: Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457511, doi:10.1214/ss/1177011136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., G. Roberts, and W. Gilks, 1996: Efficient Metropolis jumping rules. Bayesian Stat., 5, 599608.

  • Haario, H., E. Saksman, and J. Tamminen, 2001: An adaptive Metropolis algorithm. Bernoulli, 7, 223242, doi:10.2307/3318737.

  • Hararuk, O., J. Xia, and Y. Luo, 2014: Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method. J. Geophys. Res. Biogeosci., 119, 403417, doi:10.1002/2013JG002535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastings, W. K., 1970: Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109, doi:10.1093/biomet/57.1.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higdon, D., M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, 2004: Combining field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput., 26, 448466, doi:10.1137/S1064827503426693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1995: Scaling processes and problems. Plant Cell Environ., 18, 10791089, doi:10.1111/j.1365-3040.1995.tb00620.x.

  • Jeremiah, E., S. Sisson, L. Marshall, R. Mehrotra, and A. Sharma, 2011: Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers. Water Resour. Res., 47, W07547, doi:10.1029/2010WR010217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, doi:10.1115/1.3662552.

  • Keller, M., D. S. Schimel, W. W. Hargrove, and F. M. Hoffman, 2008: A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ, 6, 282284, doi:10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, M. C., and A. O’Hagan, 2001: Bayesian calibration of computer models. J. Roy. Stat. Soc., 63B, 425464, doi:10.1111/1467-9868.00294.

  • Kim, S., T. Karl, A. Guenther, G. Tyndall, J. Orlando, P. Harley, R. Rasmussen, and E. Apel, 2010: Emissions and ambient distributions of biogenic volatile organic compounds (BVOC) in a ponderosa pine ecosystem: Interpretation of PTR-MS mass spectra. Atmos. Chem. Phys., 10, 17591771, doi:10.5194/acp-10-1759-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsberg, J. J., and D. B. B. Powell, 1973: Surface exchange characteristics of leaves subject to mutual interference. Agric. Meteor., 12, 169184, doi:10.1016/0002-1571(73)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Link, W. A., and M. J. Eaton, 2012: On thinning of chains in MCMC. Methods Ecol. Evol., 3, 112115, doi:10.1111/j.2041-210X.2011.00131.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., L. Lu, D. Mao, and L. Jia, 2007: Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol. Earth Syst. Sci., 11, 769783, doi:10.5194/hess-11-769-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth, 2005: Constraining land surface and atmospheric parameters of a locally coupled model using observational data. J. Hydrometeor., 6, 156172, doi:10.1175/JHM407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953: Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087, doi:10.1063/1.1699114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, C. G., J. L. Huntington, G. M. Pohll, R. G. Allen, K. C. Mcgwire, and S. D. Bassett, 2013: Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC. J. Amer. Water Resour. Assoc., 49, 549562, doi:10.1111/jawr.12054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Ortega, J., and Coauthors, 2014: Overview of the Manitou Experimental Forest Observatory: Site description and selected science results from 2008 to 2013. Atmos. Chem. Phys., 14, 63456367, doi:10.5194/acp-14-6345-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciuto, D. M., K. J. Davis, and K. Keller, 2008: A Bayesian calibration of a simple carbon cycle model: The role of observations in estimating and reducing uncertainty. Global Biogeochem. Cycles, 22, GB2030, doi:10.1029/2006GB002908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sammis, T. W., and L. W. Gay, 1979: Evapotranspiration from an arid zone plant community. J. Arid Environ., 2, 313321.

  • Schaeffer, S. M., D. G. Williams, and D. C. Goodrich, 2000: Transpiration of cottonwood/willow forest estimated from sap flux. Agric. For. Meteor., 105, 257270, doi:10.1016/S0168-1923(00)00186-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, A., B. E. Law, M. Gockede, C. Hanson, Z. Yang, and S. Conley, 2016: Bayesian optimization of the Community Land Model simulated biosphere–atmosphere exchange using CO2 observations from a dense tower network and aircraft campaigns over Oregon. Earth Interact., 20, doi:10.1175/EI-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., L. Jin, G. Zhu, and M. Ma, 2016: Parameter estimation for a simple two-source evapotranspiration model using Bayesian inference and its application to remotely sensed estimations of latent heat flux at the regional scale. Agric. For. Meteor., 230–231, 2032, doi:10.1016/j.agrformet.2016.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, doi:10.1016/S0168-1923(00)00123-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vertenstein, M., A. Middleton, D. Feddema, and C. Fischer, 2010: CESM1.0.4’s user guide. NCAR, 152 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/ug.pdf.]

  • Wong, T. E., J. Nusbaumer, and D. C. Noone, 2017: Evaluation of modeled land–atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., doi:10.1002/2016MS000842, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., T. Du, R. Ding, L. Tong, S. Li, and L. Wang, 2017: Multiple methods to partition evapotranspiration in a maize field. J. Hydrometeor., 18, 139149, doi:10.1175/JHM-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, T., L. White, D. Hui, and Y. Luo, 2006: Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochem. Cycles, 20, GB2007, doi:10.1029/2005GB002468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., C. M. DeChant, and H. Moradkhani, 2015: Improving soil moisture profile prediction with the particle filter-Markov chain Monte Carlo method. IEEE Trans. Geosci. Remote Sens., 53, 61346147, doi:10.1109/TGRS.2015.2432067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 26282644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Barlage, R. E. Dickinson, Y. Dai, G. Wang, and K. Oleson, 2005: Treatment of undercanopy turbulence in land models. J. Climate, 18, 50865094, doi:10.1175/JCLI3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, G., Y. Su, X. Li, K. Zhang, and C. Li, 2013: Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J. Hydrol., 476, 4251, doi:10.1016/j.jhydrol.2012.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 56 4
PDF Downloads 151 33 2