Investigating the Variability of High-Elevation Seasonal Orographic Snowfall Enhancement and Its Drivers across Sierra Nevada, California

Laurie S. Huning Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, and Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Laurie S. Huning in
Current site
Google Scholar
PubMed
Close
and
Steven A. Margulis Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Steven A. Margulis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While orographically driven snowfall is known to be important in mountainous regions, a complete understanding of orographic enhancement from the basin to the mountain range scale is often inhibited by limited distributed data and spatial and/or temporal resolutions. A novel, 90-m spatially distributed snow water equivalent (SWE) reanalysis was used to overcome these limitations. Leveraging this SWE information, the interannual variability of orographic gradients in cumulative snowfall (CS) was investigated over 14 windward (western) basins in the Sierra Nevada in California from water years 1985 to 2015. Previous studies have not provided a detailed multidecadal climatology of orographic CS gradients or compared wet-year and dry-year orographic CS patterns, distributions, and gradients across an entire mountain range. The magnitude of seasonal CS gradients range from over 15 cm SWE per 100-m elevation to under 1 cm per 100 m with a 31-yr average of 6.1 cm per 100 m below ~2500 m in the western basins. The 31-yr average CS gradients generally decrease in higher elevation zones across the western basins and become negative at the highest elevations. On average, integrated vapor transport and zonal winds at 700 hPa are larger during wet years, leading to higher orographically driven CS gradients across the Sierra Nevada than in dry years. Below ~2500 m, wet years yield greater enhancement (relative to dry years) by factors of approximately 2 and 3 in the northwestern and southwestern basins, respectively. Overall, the western Sierra Nevada experiences about twice as much orographic enhancement during wet years as in dry years below the elevation corresponding to the 31-yr average maximum CS.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laurie Huning, lhuning@uci.edu

Abstract

While orographically driven snowfall is known to be important in mountainous regions, a complete understanding of orographic enhancement from the basin to the mountain range scale is often inhibited by limited distributed data and spatial and/or temporal resolutions. A novel, 90-m spatially distributed snow water equivalent (SWE) reanalysis was used to overcome these limitations. Leveraging this SWE information, the interannual variability of orographic gradients in cumulative snowfall (CS) was investigated over 14 windward (western) basins in the Sierra Nevada in California from water years 1985 to 2015. Previous studies have not provided a detailed multidecadal climatology of orographic CS gradients or compared wet-year and dry-year orographic CS patterns, distributions, and gradients across an entire mountain range. The magnitude of seasonal CS gradients range from over 15 cm SWE per 100-m elevation to under 1 cm per 100 m with a 31-yr average of 6.1 cm per 100 m below ~2500 m in the western basins. The 31-yr average CS gradients generally decrease in higher elevation zones across the western basins and become negative at the highest elevations. On average, integrated vapor transport and zonal winds at 700 hPa are larger during wet years, leading to higher orographically driven CS gradients across the Sierra Nevada than in dry years. Below ~2500 m, wet years yield greater enhancement (relative to dry years) by factors of approximately 2 and 3 in the northwestern and southwestern basins, respectively. Overall, the western Sierra Nevada experiences about twice as much orographic enhancement during wet years as in dry years below the elevation corresponding to the 31-yr average maximum CS.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laurie Huning, lhuning@uci.edu
Save
  • Aguado, E., 1990: Elevational and latitudinal patterns of snow accumulation departures from normal in the Sierra Nevada. Theor. Appl. Climatol., 42, 177185, https://doi.org/10.1007/BF00866873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, P., 1986: Mesoscale indexing of the distribution of orographic precipitation over high Mountains. J. Climate Appl. Meteor., 25, 532545, https://doi.org/10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and D. P. Lettenmaier, 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265284, https://doi.org/10.1029/94RG00625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., E. P. Mauere, M. D. Dettinger, M. Tyree, and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87 (Suppl.), 2142, https://doi.org/10.1007/s10584-007-9377-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., K. Redmond, and D. Cayan, 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, https://doi.org/10.1175/JHM-390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downing, J., 2015: Forest thinning may increase water yield from the Sierra Nevada. Calif. Agric., 69, 1011, https://doi.org/10.3733/ca.v069n01p10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., and A. Sobel, 2005: Moist dynamics and orographic precipitation in northern and central California during the New Year’s Flood 1997. Mon. Wea. Rev., 133, 15941612, https://doi.org/10.1175/MWR2943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V., R. K. Vellore, and A. W. Huggins, 2005: Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterizations and horizontal resolution. Mon. Wea. Rev., 133, 28342859, https://doi.org/10.1175/MWR3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grünewald, T., Y. Buhler, and M. Lehning, 2014: Elevation dependency of mountain snow depth. Cryosphere, 8, 23812394, https://doi.org/10.5194/tc-8-2381-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.2002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., P. J. Neiman, E. Sukovich, and M. Ralph, 2012: Representation of the Sierra barrier jet in 11 years of a high-resolution dynamical reanalysis downscaling compared with long-term wind profiler observations. J. Geophys. Res., 117, D18116, https://doi.org/10.1029/2012JD017869.

    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and S. A. Margulis, 2017: Climatology of seasonal snowfall accumulation across the Sierra Nevada (USA): Accumulation rates, distributions, and variability. Water Resour. Res., 53, 60336049, https://doi.org/10.1002/2017WR020915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., S. A. Margulis, B. Guan, D. E. Waliser, and P. J. Neiman, 2017: Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophys. Res. Lett., 44, 10 44510 453, https://doi.org/10.1002/2017GL075201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2010: Observed climate-snowpack relationships in California and their implications for the future. J. Climate, 23, 34463456, https://doi.org/10.1175/2010JCLI2903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, P. B., R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo, 2014: LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci., 18, 42614275, https://doi.org/10.5194/hess-18-4261-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. A. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015GL064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehning, M., 2013: Snow-atmosphere interactions and hydrological consequences. Adv. Water Resour., 55, 13, https://doi.org/10.1016/j.advwatres.2013.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and S. J. Ghan, 1998: Parameterizing subgrid orographic precipitation and surface cover in climate models. Mon. Wea. Rev., 126, 32713291, https://doi.org/10.1175/1520-0493(1998)126<3271:PSOPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., J. T. Abatzoglou, and Z. A. Holden, 2013: The missing mountain water: Slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science, 342, 13601364, https://doi.org/10.1126/science.1242335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., J. R. Minder, P. J. Neiman, and E. Sukovich, 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, https://doi.org/10.1175/2010JHM1264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., M. Hughes, B. Henn, E. Gutmann, B. Livenh, J. Dozier, and P. Neiman, 2015: High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. J. Hydrometeor., 16, 17731792, https://doi.org/10.1175/JHM-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S., M. Girotto, G. Cortés, and M. Durand, 2015: A particle batch smoother approach to snow water equivalent estimation. J. Hydrometeor., 16, 17521772, https://doi.org/10.1175/JHM-D-14-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S., G. Cortés, M. Girotto, and M. Durand, 2016: A Landsat-era Sierra Nevada snow reanalysis (1985–2015). J. Hydrometeor., 17, 12031221, https://doi.org/10.1175/JHM-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. Lettenmaier, 2005: Declining mountain snowpack in western North American. Bull. Amer. Meteor. Soc., 86, 3949, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. Hughes, B. J. Moore, F. M. Ralph, and E. S. Sukovich, 2013: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, https://doi.org/10.1175/MWR-D-13-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Hara, B. F., M. L. Kaplan, and S. J. Underwood, 2009: Synoptic climatology analyses of extreme snowfalls in the Sierra Nevada. Wea. Forecasting, 24, 16101624, https://doi.org/10.1175/2009WAF2222249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., D. R. Cayan, and K. P. Georgakakos, 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12 01912 030, https://doi.org/10.1029/1999JD900103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. P., S. Sobolowski, S. B. Kapnick, and J. B. Barnes, 2012: Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys. Res. Lett., 39, L18706, https://doi.org/10.1029/2012GL052741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, https://doi.org/10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenthal, W., and J. Dozier, 1996: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res., 32, 115130, https://doi.org/10.1029/95WR02718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, and A. Frei, 2001: Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, https://doi.org/10.1029/2000WR900307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 107 9
PDF Downloads 334 78 5