Toward a Surface Soil Moisture Product at High Spatiotemporal Resolution: Temporally Interpolated, Spatially Disaggregated SMOS Data

Y. Malbéteau CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France

Search for other papers by Y. Malbéteau in
Current site
Google Scholar
PubMed
Close
,
O. Merlin CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France

Search for other papers by O. Merlin in
Current site
Google Scholar
PubMed
Close
,
G. Balsamo European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by G. Balsamo in
Current site
Google Scholar
PubMed
Close
,
S. Er-Raki Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco

Search for other papers by S. Er-Raki in
Current site
Google Scholar
PubMed
Close
,
S. Khabba Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco

Search for other papers by S. Khabba in
Current site
Google Scholar
PubMed
Close
,
J. P. Walker Department of Civil Engineering, Monash University, Melbourne, Victoria, Australia

Search for other papers by J. P. Walker in
Current site
Google Scholar
PubMed
Close
, and
L. Jarlan CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France

Search for other papers by L. Jarlan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High spatial and temporal resolution surface soil moisture is required for most hydrological and agricultural applications. The recently developed Disaggregation based on Physical and Theoretical Scale Change (DisPATCh) algorithm provides 1-km-resolution surface soil moisture by downscaling the 40-km Soil Moisture Ocean Salinity (SMOS) soil moisture using Moderate Resolution Imaging Spectroradiometer (MODIS) data. However, the temporal resolution of DisPATCh data is constrained by the temporal resolution of SMOS (a global coverage every 3 days) and further limited by gaps in MODIS images due to cloud cover. This paper proposes an approach to overcome these limitations based on the assimilation of the 1-km-resolution DisPATCh data into a simple dynamic soil model forced by (inaccurate) precipitation data. The performance of the approach was assessed using ground measurements of surface soil moisture in the Yanco area in Australia and the Tensift-Haouz region in Morocco during 2014. It was found that the analyzed daily 1-km-resolution surface soil moisture compared slightly better to in situ data for all sites than the original disaggregated soil moisture products. Over the entire year, assimilation increased the correlation coefficient between estimated soil moisture and ground measurements from 0.53 to 0.70, whereas the mean unbiased RMSE (ubRMSE) slightly decreased from 0.07 to 0.06 m3 m−3 compared to the open-loop force–restore model. The proposed assimilation scheme has significant potential for large-scale applications over semiarid areas, since the method is based on data available at the global scale together with a parsimonious land surface model.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Y. Malbéteau, yoann.malbeteau@cesbio.cnes.fr

Abstract

High spatial and temporal resolution surface soil moisture is required for most hydrological and agricultural applications. The recently developed Disaggregation based on Physical and Theoretical Scale Change (DisPATCh) algorithm provides 1-km-resolution surface soil moisture by downscaling the 40-km Soil Moisture Ocean Salinity (SMOS) soil moisture using Moderate Resolution Imaging Spectroradiometer (MODIS) data. However, the temporal resolution of DisPATCh data is constrained by the temporal resolution of SMOS (a global coverage every 3 days) and further limited by gaps in MODIS images due to cloud cover. This paper proposes an approach to overcome these limitations based on the assimilation of the 1-km-resolution DisPATCh data into a simple dynamic soil model forced by (inaccurate) precipitation data. The performance of the approach was assessed using ground measurements of surface soil moisture in the Yanco area in Australia and the Tensift-Haouz region in Morocco during 2014. It was found that the analyzed daily 1-km-resolution surface soil moisture compared slightly better to in situ data for all sites than the original disaggregated soil moisture products. Over the entire year, assimilation increased the correlation coefficient between estimated soil moisture and ground measurements from 0.53 to 0.70, whereas the mean unbiased RMSE (ubRMSE) slightly decreased from 0.07 to 0.06 m3 m−3 compared to the open-loop force–restore model. The proposed assimilation scheme has significant potential for large-scale applications over semiarid areas, since the method is based on data available at the global scale together with a parsimonious land surface model.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Y. Malbéteau, yoann.malbeteau@cesbio.cnes.fr
Save
  • Albergel, C., and Coauthors, 2008: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., 12, 13231337, https://doi.org/10.5194/hess-12-1323-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., 2000: Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol., 229, 2741, https://doi.org/10.1016/S0022-1694(99)00194-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., www.fao.org/docrep/X0490E/X0490E00.htm.

  • Allen, R. G., L. S. Pereira, M. Smith, D. Raes, and J. L. Wright, 2005: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng., 131, 213, https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez-Garreton, C., D. Ryu, A. W. Western, C. H. Su, W. T. Crow, D. E. Robertson, and C. Leahy, 2015: Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes. Hydrol. Earth Syst. Sci., 19, 16591676, https://doi.org/10.5194/hess-19-1659-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., F. Bouyssel, and J. Noilhan, 2004: A simplified bi-dimensional variational analysis of soil moisture from screen-level observations in a mesoscale numerical weather-prediction model. Quart. J. Roy. Meteor. Soc., 130, 895915, https://doi.org/10.1256/qj.02.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., S. Boussetta, P. Lopez, and L. Ferranti, 2010: Evaluation of ERA-Interim and ERA-Interim-GPCP-rescaled precipitation over the U.S.A. ERA Rep. Series 5, 10 pp., https://www.ecmwf.int/en/elibrary/7926-evaluation-era-interim-and-era-interim-gpcp-rescaled-precipitation-over-usa.

  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, https://doi.org/10.5194/hess-19-389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandara, R., J. P. Walker, C. Rüdiger, and O. Merlin, 2015: Towards soil property retrieval from space: An application with disaggregated satellite observations. J. Hydrol., 522, 582593, https://doi.org/10.1016/j.jhydrol.2015.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, https://doi.org/10.1175/JCLI-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belo-Pereira, M., E. Dutra, and P. Viterbo, 2011: Evaluation of global precipitation data sets over the Iberian Peninsula. J. Geophys. Res., 116, D20101, https://doi.org/10.1029/2010JD015481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K., 1989: Changing ideas in hydrology—The case of physically-based models. J. Hydrol., 105, 157172, https://doi.org/10.1016/0022-1694(89)90101-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., D. L. Wu, T. Vihma, and J. Susskind, 2015: Verification of air/surface humidity differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic. J. Geophys. Res. Atmos., 120, 945963, https://doi.org/10.1002/2014JD021666

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudhar, A., L. Hanich, G. Boulet, B. Duchemin, B. Berjamy, and A. Chehbouni, 2009: Evaluation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol. Sci. J., 54, 10941113, https://doi.org/10.1623/hysj.54.6.1094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., 1994: A dynamical estimation of forecast error covariances in an assimilation system. Mon. Wea. Rev., 122, 23762390, https://doi.org/10.1175/1520-0493(1994)122<2376:ADEOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., T. Moramarco, F. Melone, W. Wagner, S. Hasenauer, and S. Hahn, 2012: Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Trans. Geosci. Remote Sens., 50, 25422555, https://doi.org/10.1109/TGRS.2011.2177468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., T. Moramarco, F. Melone, and W. Wagner, 2013: A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett., 40, 853858, https://doi.org/10.1002/grl.50173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, https://doi.org/10.1002/2014JD021489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J.-C., J. Noilhan, and P. Bessemoulin, 1998: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37, 371386, https://doi.org/10.1175/1520-0450(1998)037<0371:RTRZSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceballos, A., K. Scipal, W. Wagner, and J. Martínez-Fernández, 2005: Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol. Processes, 19, 15491566, https://doi.org/10.1002/hyp.5585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chehbouni, A., and Coauthors, 2008: An integrated modelling and remote sensing approach for hydrological study in arid and semiarid regions: The SUDMED Programme. Int. J. Remote Sens., 29, 51615181, https://doi.org/10.1080/01431160802036417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., W. T. Crow, and D. Ryu, 2014: Dual forcing and state correction via soil moisture assimilation for improved rainfall–runoff modeling. J. Hydrometeor., 15, 18321848, https://doi.org/10.1175/JHM-D-14-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and E. F. Wood, 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137149, https://doi.org/10.1016/S0309-1708(02)00088-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, N. N., D. Entekhabi, E. G. Njoku, J. J. C. Shi, J. T. Johnson, and A. Colliander, 2014: Tests of the SMAP combined radar and radiometer algorithm using airborne field campaign observations and simulated data. IEEE Trans. Geosci. Remote Sens., 52, 20182028, https://doi.org/10.1109/TGRS.2013.2257605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1977: A parameterization of ground-surface moisture content for use in atmospheric prediction models. J. Appl. Meteor., 16, 11821185, https://doi.org/10.1175/1520-0450(1977)016<1182:APOGSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., and R. H. Reichle, 2016: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol. Earth Syst. Sci., 20, 48954911, https://doi.org/10.5194/hess-20-4895-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., R. H. Reichle, P. R. Houser, K. R. Arsenault, N. E. C. Verhoest, and V. R. N. Pauwels, 2010: Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J. Hydrometeor., 11, 352369, https://doi.org/10.1175/2009JHM1192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., R. H. Reichle, K. R. Arsenault, P. R. Houser, S. Kumar, N. E. C. Verhoest, and V. R. N. Pauwels, 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, https://doi.org/10.1029/2011WR010588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M., B. Nijssen, and T. Wagener, 2007: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res., 112, D11113, https://doi.org/10.1029/2006JD007534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaconescu, E. P., P. Gachon, J. Scinocca, and R. Laprise, 2015: Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Climate Dyn., 45, 13251354, https://doi.org/10.1007/s00382-014-2383-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djamai, N., R. Magagi, K. Goïta, O. Merlin, Y. Kerr, and A. Roy, 2016: A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sens. Environ., 184, 114, https://doi.org/10.1016/j.rse.2016.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., J. F. Mahfouf, J. C. Calvet, E. Martin, and W. Wagner, 2011: Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrol. Earth Syst. Sci., 15, 38293841, https://doi.org/10.5194/hess-15-3829-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumedah, G., and J. P. Walker, 2014: Evaluation of model parameter convergence when using data assimilation for soil moisture estimation. J. Hydrometeor., 15, 359375, https://doi.org/10.1175/JHM-D-12-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumedah, G., A. A. Berg, and M. Wineberg, 2011: An integrated framework for a joint assimilation of brightness temperature and soil moisture using the Nondominated Sorting Genetic Algorithm II. J. Hydrometeor., 12, 15961609, https://doi.org/10.1175/JHM-D-10-05029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumedah, G., J. P. Walker, and O. Merlin, 2015: Root-zone soil moisture estimation from assimilation of downscaled Soil Moisture and Ocean Salinity data. Adv. Water Resour., 84, 1422, https://doi.org/10.1016/j.advwatres.2015.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., 1995: Recent advances in land-atmosphere interaction research. Rev. Geophys., 33, 9951003, https://doi.org/10.1029/95RG01163.

  • Entekhabi, D., H. Nakamura, and E. Njoku, 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32, 438448, https://doi.org/10.1109/36.295058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow, 2010a: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840, https://doi.org/10.1175/2010JHM1223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010b: The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escorihuela, M. J., and P. Quintana-Seguí, 2016: Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes. Remote Sens. Environ., 180, 99114, https://doi.org/10.1016/j.rse.2016.02.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, B., V. Lakshmi, R. Bindlish, T. J. Jackson, M. Cosh, and J. Basara, 2013: Passive microwave soil moisture downscaling using vegetation index and skin surface temperature. Vadose Zone J., 12, https://doi.org/10.2136/vzj2013.05.0089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, S. W., K. J. Beven, P. F. Quinn, and I. R. Wright, 1997: On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: Equifinality and the problem of robust calibration. Agric. For. Meteor., 86, 6375, https://doi.org/10.1016/S0168-1923(96)02421-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., P. Wu, X. Zhao, J. Wang, and Y. Shi, 2014: Effects of land use on soil moisture variations in a semi-arid catchment: Implications for land and agricultural water management. Land Degrad. Dev., 25, 163172, https://doi.org/10.1002/ldr.1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, https://doi.org/10.1080/014311698215333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ibrahim, B., J. Polcher, H. Karambiri, and B. Rockel, 2012: Characterization of the rainy season in Burkina Faso and its representation by regional climate models. Climate Dyn., 39, 12871302, https://doi.org/10.1007/s00382-011-1276-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., T. J. Schugge, A. D. Nicks, G. A. Coleman, and E. T. Engman, 1981: Soil moisture updating and microwave remote sensing for hydrological simulation/La remise à jour de l’état d’humidité des sols en vue de la simulation hydrologique. Hydrol. Sci. Bull., 26, 305319, https://doi.org/10.1080/02626668109490889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquette, E., Y. Kerr, A. Al Bitar, F. Cabot, A. Mialon, P. Richaume, A. Quesney, and L. Berthon, 2013: CATDS SMOS L3 soil moisture retrieval processor. Algorithm Theoretical Baseline Doc. SO-TN-CBSA-GS-0029, 73 pp., http://www.cesbio.ups-tlse.fr/SMOS_blog/wp-content/uploads/2013/08/ATBD_L3_rev2_draft.pdf.

  • Jarlan, L., G. Balsamo, S. Lafont, A. Beljaars, J. C. Calvet, and E. Mougin, 2008: Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa. ECMWF Tech. Memo 544, 33 pp., https://www.ecmwf.int/en/elibrary/10247-analysis-leaf-area-index-ecmwf-land-surface-scheme-and-impact-latent-heat-and.

    • Crossref
    • Export Citation
  • Jarlan, L., and Coauthors, 2015: Remote sensing of water resources in semi-arid Mediterranean Areas: The joint international laboratory TREMA. Int. J. Remote Sens., 36, 48794917, https://doi.org/10.1080/01431161.2015.1093198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., 2007: Soil moisture from space: Where are we? Hydrogeol. J., 15, 117120, https://doi.org/10.1007/s10040-006-0095-3.

  • Kerr, Y. H., and Coauthors, 2012: The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens., 50, 13841403, https://doi.org/10.1109/TGRS.2012.2184548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2014: CATDS SMOS L3 soil moisture retrieval processor. CATDS Algorithm Theoretical Baseline Doc., 73 pp.

  • Kim, J., and T. S. Hogue, 2012: Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Trans. Geosci. Remote Sens., 50, 446460, https://doi.org/10.1109/TGRS.2011.2161318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., 2013: Ancillary data report: Landcover classification. JPL SMAP Science Doc. 42, 9 pp., https://smap.jpl.nasa.gov/system/internal_resources/details/original/284_042_landcover.pdf.

  • Kumar, S. V., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Page, M., and Coauthors, 2012: An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resour. Manage., 26, 32093230, https://doi.org/10.1007/s11269-012-0068-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, D. J., and Coauthors, 2016: Assimilation of SMOS soil moisture into a distributed hydrological model and impacts on the water cycle variables over the Ouémé catchment in Benin. Hydrol. Earth Syst. Sci., 20, 28272840, https://doi.org/10.5194/hess-20-2827-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lievens, H., and Coauthors, 2015: SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens. Environ., 168, 146162, https://doi.org/10.1016/j.rse.2015.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lievens, H., and Coauthors, 2016: Assimilation of SMOS soil moisture and brightness temperature products into a land surface model. Remote Sens. Environ., 180, 292304, https://doi.org/10.1016/j.rse.2015.10.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lievens, H., B. Martens, N. Verhoest, S. Hahn, R. Reichle, and D. Miralles, 2017: Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates. Remote Sens. Environ., 189, 194210, https://doi.org/10.1016/j.rse.2016.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malbéteau, Y., O. Merlin, B. Molero, C. Rüdiger, and S. Bacon, 2016: DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. Int. J. Appl. Earth Obs. Geoinf., 45, 221234, https://doi.org/10.1016/j.jag.2015.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malbéteau, Y., O. Merlin, S. Gascoin, J. Gastellu, C. Mattar, L. Olivera-Guerra, S. Khabba, and L. Jarlan, 2017: Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A case study using ASTER data over a steep-sided valley in Morocco. Remote Sens. Environ., 189, 2539, https://doi.org/10.1016/j.rse.2016.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., D. B. McLaughlin, D. Entekhabi, and S. Dunne, 2002: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour. Res., 38, 1299, https://doi.org/10.1029/2001WR001114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., L. Brocca, A. Tarpanelli, and T. Moramarco, 2015: Data assimilation of satellite soil moisture into rainfall-runoff modelling: A complex recipe? Remote Sens., 7, 11 40311 433 pp., https://doi.org/10.3390/rs70911403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., A. Chehbouni, G. Boulet, and Y. Kerr, 2006: Assimilation of disaggregated microwave soil moisture into a hydrologic model using coarse-scale meteorological data. J. Hydrometeor., 7, 13081322, https://doi.org/10.1175/JHM552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., A. Chehbouni, J. Walker, R. Panciera, and Y. Kerr, 2008a: A simple method to disaggregate passive microwave-based soil moisture. IEEE Trans. Geosci. Remote Sens., 46, 786796, https://doi.org/10.1109/TGRS.2007.914807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., and Coauthors, 2008b: The NAFE’06 data set: Towards soil moisture retrieval at intermediate resolution. Adv. Water Resour., 31, 14441455, https://doi.org/10.1016/j.advwatres.2008.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., C. Rudiger, A. Al Bitar, P. Richaume, J. P. Walker, and Y. H. Kerr, 2012: Disaggregation of SMOS soil moisture in southeastern Australia. IEEE Trans. Geosci. Remote Sens., 50, 15561571, https://doi.org/10.1109/TGRS.2011.2175000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., M. J. Escorihuela, M. A. Mayoral, O. Hagolle, A. Al Bitar, and Y. Kerr, 2013: Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3km and 100m resolution in Catalunya, Spain. Remote Sens. Environ., 130, 2538, https://doi.org/10.1016/j.rse.2012.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., Y. Malbéteau, Y. Notfi, S. Bacon, S. Khabba, and L. Jarlan, 2015: Performance metrics for soil moisture downscaling methods: Application to DISPATCH data in central Morocco. Remote Sens., 7, 37833807, https://doi.org/10.3390/rs70403783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mladenova, I., V. Lakshmi, T. J. Jackson, J. P. Walker, O. Merlin, and R. A. de Jeu, 2011: Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006. Remote Sens. Environ., 115, 20962103, https://doi.org/10.1016/j.rse.2011.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molero, B., and Coauthors, 2016: SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sens. Environ., 180, 361376, https://doi.org/10.1016/j.rse.2016.02.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2011: Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int. J. Climatol., 31, 545557, https://doi.org/10.1002/joc.2098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and D. Entekhabi, 1996: Passive microwave remote sensing of soil moisture. J. Hydrol., 184, 101129, https://doi.org/10.1016/0022-1694(95)02970-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and J.-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159, https://doi.org/10.1016/0921-8181(95)00043-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., and E. F. Wood, 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part II: Application to land surface modeling with satellite rainfall forcing. J. Hydrometeor., 10, 14931506, https://doi.org/10.1175/2009JHM1155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., E. F. Wood, D. B. McLaughlin, D. Entekhabi, and L. Luo, 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment. J. Hydrometeor., 10, 794806, https://doi.org/10.1175/2009JHM1088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panciera, R., and Coauthors, 2014: The Soil Moisture Active Passive Experiments (SMAPEx): Toward soil moisture retrieval from the SMAP mission. IEEE Trans. Geosci. Remote Sens., 52, 490507, https://doi.org/10.1109/TGRS.2013.2241774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parada, L. M., and X. Liang, 2004: Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models. J. Geophys. Res., 109, D24109, https://doi.org/10.1029/2004JD004745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., R. Hoeben, N. E. C. Verhoest, and F. P. De Troch, 2001: The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. J. Hydrol., 251, 88102, https://doi.org/10.1016/S0022-1694(01)00440-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peischl, S., J. P. Walker, C. Rüdiger, N. Ye, Y. H. Kerr, E. Kim, R. Bandara, and M. Allahmoradi, 2012: The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment. Hydrol. Earth Syst. Sci., 16, 16971708, https://doi.org/10.5194/hess-16-1697-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., J.-C. Calvet, and W. Wagner, 2006: Evaluation of ERS scatterometer soil moisture products over a half-degree region in southwestern France. Geophys. Res. Lett., 33, L17401, https://doi.org/10.1029/2006GL027231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., A. Ali, F. Chopin, I. Jobard, and J.-C. Bergès, 2008: Using spaceborne surface soil moisture to constrain satellite precipitation estimates over West Africa. Geophys. Res. Lett., 35, L02813, https://doi.org/10.1029/2007GL032243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., S. Louvet, C. Gruhier, G. Quantin, and C. Legout, 2013: A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ., 136, 2836, https://doi.org/10.1016/j.rse.2013.04.011.