Uncertainty of Hydrological Model Components in Climate Change Studies over Two Nordic Quebec Catchments

Magali Troin Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Magali Troin in
Current site
Google Scholar
PubMed
Close
,
Richard Arsenault Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, and Rio Tinto, Quebec Power Operations, Jonquière, Québec, Canada

Search for other papers by Richard Arsenault in
Current site
Google Scholar
PubMed
Close
,
Jean-Luc Martel Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Jean-Luc Martel in
Current site
Google Scholar
PubMed
Close
, and
François Brissette Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by François Brissette in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projected climate change effects on hydrology are investigated for the 2041–60 horizon under the A2 emission scenarios using a multimodel approach over two snowmelt-dominated catchments in Canada. An ensemble of 105 members was obtained by combining seven snow models (SMs), five potential evapotranspiration (PET) methods, and three hydrological model (HM) structures. The study was performed using high-resolution simulations from the Canadian Regional Climate Model (CRCM–15 km) driven by two members of the third-generation Canadian Coupled Global Climate Model (CGCM3). This study aims to compare various combinations of SM–PET–HM in terms of their ability to simulate streamflows under the current climate and to evaluate how they affect the assessment of the climate change–induced hydrological impacts at the catchment scale. The variability of streamflow response caused by the use of different SMs (degree-day versus degree-day/energy balance), PET methods (temperature-based versus radiation-based methods), and HM structures is evaluated, as well as the uncertainty due to the natural climate variability (CRCM intermember variability). The hydroclimatic simulations cover 1961–90 in the present period and 2041–60 in the future period. The ensemble spread of the climate change signal on streamflow is large and varies with catchments. Using the variance decomposition on three hydrologic indicators, the HM structure was found to make the most substantial contribution to uncertainty, followed by the choice of the PET methods or natural climate variability, depending on the hydrologic indicator and the catchment. Snow models played a minor, almost negligible role in the assessment of the climate change impacts on streamflow for the study catchments.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0002.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Magali Troin, troin.magali@ouranos.ca

Abstract

Projected climate change effects on hydrology are investigated for the 2041–60 horizon under the A2 emission scenarios using a multimodel approach over two snowmelt-dominated catchments in Canada. An ensemble of 105 members was obtained by combining seven snow models (SMs), five potential evapotranspiration (PET) methods, and three hydrological model (HM) structures. The study was performed using high-resolution simulations from the Canadian Regional Climate Model (CRCM–15 km) driven by two members of the third-generation Canadian Coupled Global Climate Model (CGCM3). This study aims to compare various combinations of SM–PET–HM in terms of their ability to simulate streamflows under the current climate and to evaluate how they affect the assessment of the climate change–induced hydrological impacts at the catchment scale. The variability of streamflow response caused by the use of different SMs (degree-day versus degree-day/energy balance), PET methods (temperature-based versus radiation-based methods), and HM structures is evaluated, as well as the uncertainty due to the natural climate variability (CRCM intermember variability). The hydroclimatic simulations cover 1961–90 in the present period and 2041–60 in the future period. The ensemble spread of the climate change signal on streamflow is large and varies with catchments. Using the variance decomposition on three hydrologic indicators, the HM structure was found to make the most substantial contribution to uncertainty, followed by the choice of the PET methods or natural climate variability, depending on the hydrologic indicator and the catchment. Snow models played a minor, almost negligible role in the assessment of the climate change impacts on streamflow for the study catchments.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0002.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Magali Troin, troin.magali@ouranos.ca

Supplementary Materials

    • Supplemental Materials (ZIP 194.01 KB)
Save
  • Ajami, N. K., Q. Duan, Q. X. Gao, and S. Sorooshian, 2006: Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. J. Hydrometeor., 7, 755768, https://doi.org/10.1175/JHM519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., and F. Brissette, 2014: Determining the optimal spatial distribution of weather station networks for hydrological modeling purposes using RCM datasets: An experimental approach. J. Hydrometeor., 15, 517526, https://doi.org/10.1175/JHM-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., and F. Brissette, 2016: Analysis of continuous streamflow regionalization methods within a virtual setting. Hydrol. Sci. J., 61, 26802693, https://doi.org/10.1080/02626667.2016.1154557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., D. Poissant, and F. Brissette, 2015a: Parameter dimensionality reduction of a conceptual model for streamflow prediction in Canadian, snowmelt dominated ungauged basins. Adv. Water Resour., 85, 2744, https://doi.org/10.1016/j.advwatres.2015.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., P. Gatien, B. Renaud, F. Brissette, and J. L. Martel, 2015b: A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow prediction. J. Hydrol., 529, 754767, https://doi.org/10.1016/j.jhydrol.2015.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bae, D. H., I. W. Jung, and D. P. Lettenmaier, 2011: Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea. J. Hydrol., 401, 90105, https://doi.org/10.1016/j.jhydrol.2011.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beauchamp, J., R. Leconte, M. Trudel, and F. Brissette, 2013: Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate. Water Resour. Res., 49, 38523862, https://doi.org/10.1002/wrcr.20336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergström, S., 1976: Development and application of a conceptual runoff model for Scandinavian catchments. Swedish Meteorological and Hydrological Institute Rep. RH07, 134 pp.

  • Bohn, T. J., M. Y. Sonessa, and D. P. Lettenmaier, 2010: Seasonal hydrologic forecasting: Do multimodel ensemble averages always yield improvements in forecast skill? J. Hydrometeor., 11, 13581372, https://doi.org/10.1175/2010JHM1267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, M. J., 2005: Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol., 303, 176198, https://doi.org/10.1016/j.jhydrol.2004.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brigode, P., L. Oudin, and C. Perrin, 2013: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? J. Hydrol., 476, 410425, https://doi.org/10.1016/j.jhydrol.2012.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341362, https://doi.org/10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. Brissette, and R. Leconte, 2011a: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202, https://doi.org/10.1016/j.jhydrol.2011.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. Brissette, A. Poulin, and R. Leconte, 2011b: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, https://doi.org/10.1029/2011WR010602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2016: Characterizing uncertainty of the hydrologic impacts of climate change. Curr. Climate Change Rep., 2, 5564, https://doi.org/10.1007/s40641-016-0034-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Elía, R., S. Biner, and A. Frigon, 2013: Interannual variability and expected regional climate change over North America. Climate Dyn., 41, 12451267, https://doi.org/10.1007/s00382-013-1717-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81, 5370, https://doi.org/10.1007/s10584-006-9228-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian, 2007: Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30, 13711386, https://doi.org/10.1016/j.advwatres.2006.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fatichi, S., S. Rimkus, P. Burlando, and R. Bordoy, 2014: Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies. Sci. Total Environ., 493, 11711182, https://doi.org/10.1016/j.scitotenv.2013.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferro, C. A., 2004: Attributing variation in a regional climate change modelling experiment. PRUDENCE Working Note, 21 pp., http://prudence.dmi.dk/public/publications/analysis_of_variance.pdf.

  • Flato, G. M., and G. J. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28, 195198, https://doi.org/10.1029/2000GL012121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., and R. Turcotte, 2007: Le modèle hydrologique MOHYSE (in French). Université du Québec à Montréal Note SCA7420, 14 pp., https://ena.etsmtl.ca/pluginfile.php/37357/mod_resource/content/1/MOHYSE_AP_oct2013.pdf.

  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., A. L. James, and H. Yao, 2015: Investigations of uncertainty in SWAT hydrologic simulations: A case study of a Canadian Shield catchment. Hydrol. Processes, 29, 40004017, https://doi.org/10.1002/hyp.10477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., D. J. Seo, H. V. Gupta, J. Schaake, and M. B. Butts, 2004: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol., 298, 222241, https://doi.org/10.1016/j.jhydrol.2004.03.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 11411158, https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamon, W. R., 1961: Estimating potential evaporation. J. Hydraul. Div., Amer. Soc. Civ. Eng., 87, 107–120.

  • Haque, M. M., A. Rahman, D. Hagare, G. Kibria, and F. Karim, 2015: Estimation of catchment yield and associated uncertainties due to climate change in a mountainous catchment in Australia. Hydrol. Processes, 29, 43394349, https://doi.org/10.1002/hyp.10492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, https://doi.org/10.1007/s00382-010-0810-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, I.-W., and H. Chang, 2011: Assessment of future runoff trends under multiple climate change scenarios in the Willamette River basin, Oregon, USA. Hydrol. Processes, 25, 258277, https://doi.org/10.1002/hyp.7842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, A. L., H. N. Davies, V. A. Bell, and R. G. Jones, 2009: Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change, 92, 4163, https://doi.org/10.1007/s10584-008-9471-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M., A. Stuart, and J. K. Ord, 1977: Design and Analysis, and Time-Series. Vol. 3, The Advanced Theory of Statistics, 4th ed., Charles Griffin and Co. Ltd., 780 pp.

  • Langlois, A., A. Royer, E. Fillol, A. Frigon, and R. Laprise, 2004: Evaluation of the snow cover variation in the Canadian Regional Climate Model over eastern Canada using passive microwave satellite data. Hydrol. Processes, 18, 11271138, https://doi.org/10.1002/hyp.5514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langlois, A., J. Bergeron, R. Brown, A. Royer, R. Harvey, A. Roy, L. Wang, and N. Thériault, 2014: Evaluation of CLASS 2.7 and 3.5 simulations of snow properties from the Canadian Regional Climate Model (CRCM4) over Québec, Canada. J. Hydrometeor., 15, 13251343, https://doi.org/10.1175/JHM-D-13-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., D. Caya, A. Frigon, and D. Paquin, 2003: Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America. Climate Dyn., 21, 405421, https://doi.org/10.1007/s00382-003-0342-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindenschmidt, K. E., K. Fleischbein, and M. Baborowski, 2007: Structural uncertainty in a river water quality modelling system. Ecol. Modell., 204, 289300, https://doi.org/10.1016/j.ecolmodel.2007.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and H. V. Gupta, 2007: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006WR005756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., P. Riboust, S. Somot, and R. Laprise, 2015: Reconstruction of the spring 2011 Richelieu River flood by two regional climate models and a hydrological model. J. Hydrometeor., 16, 3654, https://doi.org/10.1175/JHM-D-14-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens, 2013: Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for central Asian glaciers. Hydrol. Earth Syst. Sci., 17, 36613677, https://doi.org/10.5194/hess-17-3661-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machguth, H., F. Paul, M. Hoelzle, and W. Haeberli, 2006: Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring. Ann. Glaciol., 43, 335343, https://doi.org/10.3189/172756406781812285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuffie, K., and A. Henderson-Sellers, 2005: A Climate Modelling Primer. Wiley, 296 pp.

    • Crossref
    • Export Citation
  • Mendoza, P. A., and Coauthors, 2015: Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. J. Hydrometeor., 16, 762780, https://doi.org/10.1175/JHM-D-14-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minville, M., D. Cartier, C. Guay, L.-A. Leclaire, C. Audet, S. Le Digabel, and J. Merleau, 2014: Improving process representation in conceptual hydrological model calibration using climate simulations. Water Resour. Res., 50, 50445073, https://doi.org/10.1002/2013WR013857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and the environment. The State and Movement of Water in Living Organisms, G. E. Fogg, Ed., Symposia of the Society for Experimental Biology, No. 19, Cambridge University Press, 205–234.

  • Music, B., and D. Caya, 2007: Evaluation of the hydrological cycle over the Mississippi River basin as simulated by the Canadian Regional Climate Model (CRCM). J. Hydrometeor., 8, 969988, https://doi.org/10.1175/JHM627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Najafi, M. R., H. Moradkhani, and I. W. Jung, 2011: Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol. Processes, 25, 28142826, https://doi.org/10.1002/hyp.8043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne, 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303, 290306, https://doi.org/10.1016/j.jhydrol.2004.08.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pellicciotti, F., B. Brock, U. Strasser, P. Burlando, M. Funk, and J. Corripio, 2005: An enhanced temperature-index glacier melt model including the shortwave radiation balance: Development and testing for Haut Glacier d’Arolla, Switzerland. J. Glaciol., 51, 573587, https://doi.org/10.3189/172756505781829124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrin, C., C. Michel, and V. Andréassian, 2003: Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279, 275289, https://doi.org/10.1016/S0022-1694(03)00225-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. A., and Coauthors, 2006: Climate and climate change over North America as simulated by the Canadian RCM. J. Climate, 19, 31123132, https://doi.org/10.1175/JCLI3769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulin, A., F. Brissette, R. Leconte, R. Arsenault, and J. S. Malo, 2011: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol., 409, 626636, https://doi.org/10.1016/j.jhydrol.2011.08.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat fluxes and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and H. Davies, 2009a: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: Baseline climate. Climatic Change, 93, 177195, https://doi.org/10.1007/s10584-008-9464-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and H. Davies, 2009b: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate. Climatic Change, 93, 197222, https://doi.org/10.1007/s10584-008-9461-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks, 2010: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res., 46, W05521, https://doi.org/10.1029/2009WR008328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, J., and K. Snelgrove, 2015: Uncertainty in regional climate model mean runoff projections under climate change: Case study of Labrador’s Churchill River basin. Atmos.–Ocean, 53, 319331, https://doi.org/10.1080/07055900.2015.1026872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaby, L. P., J. C. Refsgaard, T. O. Sonnenborg, and A. L. Højberg, 2015: Spatial uncertainty in bias corrected climate change projections and hydrogeological impacts. Hydrol. Processes, 29, 45144532, https://doi.org/10.1002/hyp.10501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiller, G., and F. Anctil, 2014: Climate change impacts on the hydrologic regime of a Canadian river: Comparing uncertainties arising from climate natural variability and lumped hydrological model structures. Hydrol. Earth Syst. Sci., 18, 20332047, https://doi.org/10.5194/hess-18-2033-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sudheer, K. P., G. Lakshmi, and I. Chaubey, 2011: Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environ. Modell. Software, 26, 135143, https://doi.org/10.1016/j.envsoft.2010.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Supharatid, S., 2015: Assessment of CMIP3-CMIP5 climate models precipitation projection and implication of flood vulnerability of Bangkok. Amer. J. Climate Change, 4, 55112, https://doi.org/10.4236/ajcc.2015.41011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, https://doi.org/10.1175/JCLI3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, https://doi.org/10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troin, M., J. A. Velázquez, D. Caya, and F. Brissette, 2015a: Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: A case study of two Canadian catchments. J. Hydrol., 520, 268288, https://doi.org/10.1016/j.jhydrol.2014.11.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troin, M., R. Arsenault, and F. Brissette, 2015b: Performance and uncertainty evaluation of snow models on snowmelt flow simulations over a Nordic catchment (Mistassibi, Canada). Hydrology, 2, 289317, https://doi.org/10.3390/hydrology2040289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troin, M., A. Poulin, M. Baraer, and F. Brissette, 2016: Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies. J. Hydrol., 540, 588602, https://doi.org/10.1016/j.jhydrol.2016.06.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turcotte, R., L. G. Fortin, V. Fortin, J. P. Fortin, and J. P. Villeneuve, 2007: Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada. Nord. Hydrol., 38, 211234, https://doi.org/10.2166/nh.2007.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valéry, A., 2010: Modélisation précipitations—Débit sous influence nivale. Élaboration d’un module neige et évaluation sur 380 bassins versants. Ph.D. thesis, Agro Paris Tech, 417 pp., https://webgr.irstea.fr/wp-content/uploads/2012/07/2010-VALERY-THESE.pdf.

  • Van Griensven, A., T. Meixner, R. Srinivasan, and S. Grunwald, 2008: Fit-for-purpose analysis of uncertainty using split-sampling evaluations. Hydrol. Sci. J., 53, 10901103, https://doi.org/10.1623/hysj.53.5.1090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., J. B. Kim, D. E. Rupp, and P. W. Mote, 2015: Selecting climate change scenarios using impact-relevant sensitivities. Geophys. Res. Lett., 42, 55165525, https://doi.org/10.1002/2015GL063208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vehviläinen, B., 1992: Snow cover models in operational watershed forecasting. Ph.D. dissertation, Finnish Environment Institute, 112 pp.

  • Velázquez, J. A., F. Anctil, M. H. Ramos, and C. Perrin, 2011: Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures. Adv. Geosci., 29, 3342, https://doi.org/10.5194/adgeo-29-33-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velázquez, J. A., M. Troin, and D. Caya, 2015a: Modelación hidrológica del río Tampaón en el contexto del cambio climático. Tecnol. Cienc. Agua, 6 (5), 1730.

    • Search Google Scholar
    • Export Citation
  • Velázquez, J. A., M. Troin, D. Caya, and F. Brissette, 2015b: Evaluating the time-invariance hypothesis of climate model bias correction: Implications for hydrological impact studies. J. Hydrometeor., 16, 20132026, https://doi.org/10.1175/JHM-D-14-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian Land Surface Scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111113, https://doi.org/10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., N. A. McFarlane, and M. Lazare, 1993: CLASS—A Canadian Land Surface Scheme for GCMs. II. Vegetation model and coupled runs. Int. J. Climatol., 13, 347370, https://doi.org/10.1002/joc.3370130402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Wagener, T., and H. V. Gupta, 2005: Model identification for hydrological forecasting under uncertainty. Stochastic Environ. Res. Risk Assess., 19, 378387, https://doi.org/10.1007/s00477-005-0006-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2005: Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Processes, 19, 32013219, https://doi.org/10.1002/hyp.5819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and I. Harris, 2006: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res., 42, W02419, https://doi.org/10.1029/2005WR004065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra, 2016: Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J. Geophys. Res. Atmos., 121, 317, https://doi.org/10.1002/2015JD023719.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 765 195 9
PDF Downloads 653 153 10