Thermal Inertia Approach Using a Heat Budget Model to Estimate the Spatial Distribution of Surface Soil Moisture over a Semiarid Grassland in Central Mongolia

Dai Matsushima Department of Civil and Environmental Engineering, Chiba Institute of Technology, Narashino, Japan

Search for other papers by Dai Matsushima in
Current site
Google Scholar
PubMed
Close
,
Jun Asanuma Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Japan

Search for other papers by Jun Asanuma in
Current site
Google Scholar
PubMed
Close
, and
Ichirow Kaihotsu Department of Natural Environmental Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan

Search for other papers by Ichirow Kaihotsu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermal inertia is a physical parameter that evaluates soil thermal properties with an emphasis on the stability of the temperature when the soil is affected by heating/cooling. Thermal inertia can be retrieved from a heat budget formulation as a parameter when the time series of Earth surface temperature and forcing variables, such as insolation and air temperature, are given. In this study, a two-layer, linearized heat budget model was employed for the retrieval of thermal inertia over a grassland in a semiarid region. Application of different formulations to the aerodynamic conductance with respect to atmospheric stability significantly improved the accuracy of the thermal inertia retrieval. The retrieved values of thermal inertia were well correlated with in situ surface soil moisture at multiple ground stations. The daily time series of thermal inertia–derived soil moisture qualitatively agreed well with in situ soil moisture after antecedent rainfalls, which was found after fitting the time series to an exponentially decaying function. On the contrary, AMSR2 soil moisture mostly did not agree with in situ soil moisture. The results of the estimation showed high accuracy: the root-mean-square error was 0.038 m3 m−3 compared to the in situ data and was applied to an area of 2° × 2° in which the in situ observation locations were included. The spatiotemporal distribution of surface soil moisture was mapped at a 0.03° × 0.03° spatial resolution in the study area as 10- or 11-day averages over a vegetation growth period of 2012.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dai Matsushima, matsushima.dai@it-chiba.ac.jp

Abstract

Thermal inertia is a physical parameter that evaluates soil thermal properties with an emphasis on the stability of the temperature when the soil is affected by heating/cooling. Thermal inertia can be retrieved from a heat budget formulation as a parameter when the time series of Earth surface temperature and forcing variables, such as insolation and air temperature, are given. In this study, a two-layer, linearized heat budget model was employed for the retrieval of thermal inertia over a grassland in a semiarid region. Application of different formulations to the aerodynamic conductance with respect to atmospheric stability significantly improved the accuracy of the thermal inertia retrieval. The retrieved values of thermal inertia were well correlated with in situ surface soil moisture at multiple ground stations. The daily time series of thermal inertia–derived soil moisture qualitatively agreed well with in situ soil moisture after antecedent rainfalls, which was found after fitting the time series to an exponentially decaying function. On the contrary, AMSR2 soil moisture mostly did not agree with in situ soil moisture. The results of the estimation showed high accuracy: the root-mean-square error was 0.038 m3 m−3 compared to the in situ data and was applied to an area of 2° × 2° in which the in situ observation locations were included. The spatiotemporal distribution of surface soil moisture was mapped at a 0.03° × 0.03° spatial resolution in the study area as 10- or 11-day averages over a vegetation growth period of 2012.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dai Matsushima, matsushima.dai@it-chiba.ac.jp
Save
  • Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17, 589602, https://doi.org/10.1145/321607.321609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandara, R., J. P. Walker, and C. Rüdiger, 2014: Towards soil property retrieval from space: Proof of concept using in situ observations. J. Hydrol., 512, 2738, https://doi.org/10.1016/j.jhydrol.2014.02.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandara, R., J. P. Walker, C. Rüdiger, and O. Merlin, 2015: Towards soil property retrieval from space: An application with disaggregated satellite observations. J. Hydrol., 522, 582593, https://doi.org/10.1016/j.jhydrol.2015.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulet, G., and Coauthors, 2015: The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat. Hydrol. Earth Syst. Sci., 19, 46534672, https://doi.org/10.5194/hess-19-4653-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, T. Y., Y. C. Wang, C. C. Feng, A. D. Ziegler, T. W. Gaimbelluca, and Y. A. Liou, 2012: Estimation of root zone soil moisture using apparent thermal inertia with MODIS imagery over a tropical catchment in Northern Thailand. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 752761, https://doi.org/10.1109/JSTARS.2012.2190588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., J. S. McCartney, and N. Lu, 2015: Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng., 33, 207221, https://doi.org/10.1007/s10706-015-9843-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imaoka, K., and Coauthors, 2010: Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE, 98, 717734, https://doi.org/10.1109/JPROC.2009.2036869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, O., 1975: Thermal conductivity of soils. Ph.D. thesis, University of Trondheim, 236 pp.

  • Kaihotsu, I., T. Yanamaka, S. Ikebuchi, and T. Kojiri, 2004: Groundwater recharge at the several monitoring station sites in semi-arid land—Monitoring data analysis in the study area of Mongolia (in Japanese with English abstract). Annu. Disaster Prev. Res. Inst., Kyoto Univ., 47B, 863869.

    • Search Google Scholar
    • Export Citation
  • Kaihotsu, I., T. Koike, T. Yamanaka, H. Fujii, T. Ohta, K. Tamagawa, D. Oyunbaatar, and R. Akiyama, 2009: Validation of soil moisture estimation by AMSR-E in the Mongolian Plateau. J. Remote Sens. Soc. Jpn., 29, 271281, https://doi.org/10.11440/rssj.29.271.

    • Search Google Scholar
    • Export Citation
  • Kaihotsu, I., K. Imaoka, H. Fujii, D. Oyunbaatar, T. Yamanaka, K. Shiraishi, and T. Koike, 2013: First evaluation of SMOS L2 soil moisture products using in situ observation data of MAVEX on the Mongolian Plateau in 2010 and 2011. Hydrol. Res. Lett., 7, 3035, https://doi.org/10.3178/hrl.7.30.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, H., S. Takahashi, and T. Takahashi, 1998: Estimation of insolation over the Pacific Ocean off the Sanriku Coast. J. Oceanogr., 54, 457464, https://doi.org/10.1007/BF02742448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS Mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondo, J., and T. Watanabe, 1992: Studies on the bulk transfer coefficients over a vegetated surface with a multilayer energy budget model. J. Atmos. Sci., 49, 21832199, https://doi.org/10.1175/1520-0469(1992)049<2183:SOTBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondo, J., and J. Xu, 1996: An estimation of heat balance for arid and semi-arid regions in China: (1) Climatological conditions, soil parameters and calculation method (in Japanese with English abstract). J. Jpn. Soc. Hydrol. Water Resour., 9, 162174, https://doi.org/10.3178/jjshwr.9.162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondo, J., T. Nakamura, and T. Yamazaki, 1991: Estimation of the solar and downward atmospheric radiation (in Japanese with English abstract). Tenki, 38, 4148.

    • Search Google Scholar
    • Export Citation
  • Li, S.-G., J. Asanuma, A. Kotani, G. Davaa, and D. Oyunbaatar, 2007: Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. J. Hydrol., 333, 133143, https://doi.org/10.1016/j.jhydrol.2006.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., T. Koike, H. Fujii, T. Ohta, and K. Tamagawa, 2009: Development of a physically-based soil moisture retrieval algorithm for spaceborne passive microwave radiometers and its application to AMSR-E. J. Remote Sens. Soc. Japan, 29, 253262, https://doi.org/10.11440/rssj.29.253.

    • Search Google Scholar
    • Export Citation
  • Lu, S., Z. Ju, T. Ren, and R. Horton, 2009: A general approach to estimate soil water content from thermal inertia. Agric. For. Meteor., 149, 16931698, https://doi.org/10.1016/j.agrformet.2009.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltese, A., P. D. Bates, F. Capodici, M. Cannarozzo, G. Ciraolo, and G. La Loggia, 2013: Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrol. Sci. J., 58, 11441161, https://doi.org/10.1080/02626667.2013.802322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsushima, D., 2007: Estimating regional distribution of surface heat fluxes by combining satellite data and a heat budget model over the Kherken River Basin, Mongolia. J. Hydrol., 333, 8699, https://doi.org/10.1016/j.jhydrol.2006.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsushima, D., and J. Kondo, 1997: A proper method for estimating sensible heat flux above horizontal-homogeneous vegetation canopy using radiometric surface observations. J. Appl. Meteor., 36, 16961711, https://doi.org/10.1175/1520-0450(1997)036<1696:APMFES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsushima, D., R. Kimura, and M. Shinoda, 2012: Soil moisture estimation using thermal inertia: Potential and sensitivity to data conditions. J. Hydrometeor., 13, 638648, https://doi.org/10.1175/JHM-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsushima, D., J. Asanuma, and I. Kaihotsu, 2017: Variations in the relation between thermal inertia and soil moisture content with regard to the soil types as a parameter (in Japanese). Proc. Soil Moisture Workshop 2016, Tokyo, Japan, Hiroshima University, 13–17.

  • McCumber, M. C., and R. A. Pielke 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. J. Geophys. Res., 86, 99299938, https://doi.org/10.1029/JC086iC10p09929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minacapilli, M., M. Iovino, and F. Blanda, 2009: High resolution remote estimation of soil surface water content by a thermal inertia approach. J. Hydrol., 379, 229238, https://doi.org/10.1016/j.jhydrol.2009.09.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minacapilli, M., C. Cammalleri, G. Ciraolo, F. D’Asaro, M. Iovino, and A. Maltese, 2012: Thermal inertia modelling for soil surface water content estimation: A laboratory experiment. Soil. Sci. Soc. Amer. J., 76, 92100, https://doi.org/10.2136/sssaj2011.0122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, T., and A. Verhoef, 2007: Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: I. A universal approach to calculate thermal inertia. Agric. For. Meteor., 147, 8087, https://doi.org/10.1016/j.agrformet.2007.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2012a: MODIS/combined albedo 16-day L3 global 1km (MCD43B3). LP DAAC, accessed 17 June 2015, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd43b3.

  • NASA, 2012b: MODIS/Terra leaf area index - fraction of photosynthetically active radiation 8-day L4 global 1km (MOD15A2). LP DAAC, accessed 8 May 2013, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2.

  • NASA, 2012c: MODIS/Terra land surface temperature and emissivity daily 5-minute L2 swath 1km (MOD11_L2). LP DAAC, accessed 11 June 2015, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11_l2_v006.

  • NASA, 2012d: MODIS/Aqua land surface temperature and emissivity daily 5-minute L2 swath 1km (MYD11_L2). LP DAAC, accessed 11 June 2015, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/myd11_l2_v006.

  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, https://doi.org/10.1093/comjnl/7.4.308.

  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, D. A., and C. D. Ellyett, 1979: The thermal inertia approach to mapping of soil moisture and geology. Remote Sens. Environ., 8, 151168, https://doi.org/10.1016/0034-4257(79)90014-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. C., 1977: Thermal inertia mapping: A new view of the earth. J. Geophys. Res., 82, 25822590, https://doi.org/10.1029/JC082i018p02582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, N. Lu, Y. Chen, L. Zhao, and M. Han, 2013: Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sens. Environ., 138, 19, https://doi.org/10.1016/j.rse.2013.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., L. Zhao, Y. Chen, K. Yang, Y. Yang, Z. Chen, and H. Lu, 2015: Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture. J. Hydrol., 523, 170178, https://doi.org/10.1016/j.jhydrol.2015.01.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawada, Y., T. Koike, and J. P. Walker, 2015: A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics. J. Geophys. Res. Atmos., 120, 59105930, https://doi.org/10.1002/2014JD022895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., and Coauthors, 2016: SMAP soil moisture drying more rapid than observed in situ following rainfall events. 2016 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H24C-04.

  • Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., and M. H. El Kharraz, 1999: Combining afternoon and morning NOAA satellites for thermal inertia estimation 2. Methodology and application. J. Geophys. Res., 104, 94559465, https://doi.org/10.1029/1998JD200108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., S. Liu, W. P. Kustas, J. Zhou, Z. Xu, T. Xia, and M. Li, 2016: Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agric. For. Meteor., 230-231, 819, https://doi.org/10.1016/j.agrformet.2016.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • van de Griend, A. A., P. J. Camillo, and R. J. Gurney, 1985: Discrimination of soil physical parameters, thermal inertia, and soil moisture from diurnal surface temperature fluctuations. Water Resour. Res., 21, 9971009, https://doi.org/10.1029/WR021i007p00997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verstraeten, W. W., F. Veroustraete, C. J. van der Sande, I. Grootaers, and J. Feyen, 2006: Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ., 101, 299314, https://doi.org/10.1016/j.rse.2005.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and A. P. Cracknell, 1995: Advanced thermal inertia modelling. Int. J. Remote Sens., 16, 431446, https://doi.org/10.1080/01431169508954411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, T., I. Kaihotsu, D. Oyunbaatar, and T. Ganbold, 2007: Characteristics and controlling factors of regional-scale variability in surface soil moisture within semi-arid grassland in Mongolia. J. Meteor. Soc. Japan, 85A, 261270, https://doi.org/10.2151/jmsj.85A.261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, I. Kaihotsu, and J. Qin, 2009: Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions. J. Hydrometeor., 10, 780793, https://doi.org/10.1175/2008JHM1065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zribi, M., S. Saux‐Picart, C. Andre, L. Descroix, C. Ottle, and A. Kallel, 2007: Soil moisture mapping based on ASAR/ENVISAT radar data over a Sahelian region. Int. J. Remote Sens., 28, 35473565, https://doi.org/10.1080/01431160601009680.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 367 91 3
PDF Downloads 290 70 5