Improving the Quality of Heavy Precipitation Estimates from Satellite Passive Microwave Rainfall Retrievals

Veljko Petković Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Veljko Petković in
Current site
Google Scholar
PubMed
Close
,
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
,
David L. Randel Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David L. Randel in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. Pierce Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Jeffrey R. Pierce in
Current site
Google Scholar
PubMed
Close
, and
John K. Kodros Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by John K. Kodros in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Veljko Petković, veljko@atmos.colostate.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Veljko Petković, veljko@atmos.colostate.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Adams, P. J., and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, doi:10.1029/2001JD001010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A Tool to Estimate Land–Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, P. A., and O. W. Thiele, Eds., 1981: Precipitation measurements from space. Workshop Rep., NASA/Goddard Space Flight Center, 431 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830016998.pdf.

  • Basharinov, A. E., S. T. Yegorov, A. S. Gurvich, and A. M. Oboukhov, 1971: Some results of microwave sounding of the atmosphere and ocean from the satellite Cosmos 243. Space Res., 11, 593600.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., H. Nguyen, B. Lambrigtsen, M. Schreier, and V. Dang, 2015: Investigating the role of multi-spectral and near surface temperature and humidity data to improve precipitation detection at high latitudes. Atmos. Res., 163, 212, doi:10.1016/j.atmosres.2014.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, doi:10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L'Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, doi:10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., and Coauthors, 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements. Part 2: Overcoming database profile selection ambiguity by consideration of meteorological control on microphysics. IEEE Trans. Geosci. Remote Sens., 51, 46504671, doi:10.1109/TGRS.2013.2258161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, S. D., and Coauthors, 2013: Understanding global secondary organic aerosol amount and size-resolved condensational behavior. Atmos. Chem. Phys., 13, 11 51911 534, doi:10.5194/acp-13-11519-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, doi:10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, D., D. Newell, F. Wentz, S. Krimchansky, and G. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, doi:10.1109/JSTARS.2015.2403303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378, doi:10.1126/science.1125261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, P. G., and D. Pawlak, 2000: MetOp: The space segment for EUMETSAT’s polar system. ESA Bull., 102, 618.

  • Ek, M., and L. Mahrt, 1994: Daytime evolution of relative humidity at the boundary layer top. Mon. Wea. Rev., 122, 27092721, doi:10.1175/1520-0493(1994)122<2709:DEORHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and C. D. Kummerow, 2008: Toward a fully parametric retrieval of the nonraining parameters over the global oceans. J. Appl. Meteor. Climatol., 47, 15991618, doi:10.1175/2007JAMC1712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. D. Kummerow, T. S. L’Ecuyer, Y. N. Takayabu, and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698, doi:10.1175/2010JCLI3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, doi:10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GPM Science Team, 2016: GPM GMI_R Common Calibrated Brightness Temperatures Collocated L1C 1.5 hours 13 km V05. Goddard Earth Sciences Data and Information Services Center, accessed August 2016, doi:10.5067/GPM/GMI/R/1C/05.

    • Crossref
    • Export Citation
  • Grecu, M., W. Olson, S. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. Kelley, and S. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, doi:10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, doi:10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341853, doi:10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2000: New numerical analysis and forecast system (in Japanese). Japan Meteorological Agency Annual Rep. 33, 143 pp.

  • Joyce, R., J. Janowiak, P. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., T. Matsui, J. Chern, K. Mohr, C. Kummerow, and D. Randel, 2016: Global precipitation estimates from cross-track passive microwave observations using a physically based retrieval scheme. J. Hydrometeor., 17, 383400, doi:10.1175/JHM-D-15-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodros, J. K., and J. R. Pierce, 2017: Important global and regional differences in aerosol cloud–albedo effect estimates between simulations with and without prognostic aerosol microphysics. J. Geophys. Res. Atmos., 122, 40034018, doi:10.1002/2016JD025886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodros, J. K., R. Cucinotta, D. A. Ridley, C. Wiedinmyer, and J. R. Pierce, 2016: The aerosol radiative effects of uncontrolled combustion of domestic waste. Atmos. Chem. Phys., 16, 67716784, doi:10.5194/acp-16-6771-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33, 318, doi:10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Berg, J. Thomas-Stahle, and H. Masunaga, 2006: Quantifying global uncertainties in a simple microwave rainfall algorithm. J. Atmos. Oceanic Technol., 23, 2337, doi:10.1175/JTECH1827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. J. Munchak, and V. Petković, 2015: The evolution of the Goddard Profiling Algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkee, D. B., G. Poe, D. Boucher, S. Swadley, Y. Hong, J. Wessel, and E. Uliana, 2008: Design and evaluation of the first Special Sensor Microwave Imager/Sounder. IEEE Trans. Geosci. Remote Sens., 46, 863883, doi:10.1109/TGRS.2008.917980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An uncertainty model for Bayesian Monte Carlo retrieval algorithms: Application to the TRMM observing system. Quart. J. Roy. Meteor. Soc., 128, 17131737, doi:10.1002/qj.200212858316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., Y. Wang, B. Pan, J. Hu, Y. Liu, and R. Zhang, 2016: Distinct impacts of aerosols on an evolving continental cloud complex during the RACORO field campaign. J. Atmos. Sci., 73, 36813700, doi:10.1175/JAS-D-15-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKague, D., K. F. Evans, and S. Avery, 1998: Assessment of the effects of drop size distribution variations retrieved from UHF radar on passive microwave remote sensing of precipitation. J. Appl. Meteor., 37, 155165, doi:10.1175/1520-0450(1998)037<0155:AOTEOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, P. C., R. R. Ferraro, and N.-Y. Wang, 2015: Updated screening procedures for GPROF2010 over land: Utilization for AMSR-E. J. Atmos. Oceanic Technol., 32, 10151028, doi:10.1175/JTECH-D-14-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muth, C., W. A. Webb, W. Atwood, and P. Lee, 2005: Advanced technology microwave sounder on the National Polar-Orbiting Operational Environmental Satellite System. Proc. IEEE Int. Conf. on Geoscience and Remote Sensing Symp., Seoul, South Korea, Institute of Electrical and Electronics Engineers, 99–103, doi:10.1109/IGARSS.2005.1526113.

    • Crossref
    • Export Citation
  • Parsons, D. B., J.-L. Redelsperger, and K. Yoneyama, 2000: The evolution of the tropical western Pacific atmosphere–ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126, 517548, doi:10.1002/qj.49712656307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2015: Performance of the GPM passive microwave retrieval in the Balkan flood event of 2014. J. Hydrometeor., 16, 25012518, doi:10.1175/JHM-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, doi:10.1175/JAMC-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G., and K. Li, 2013: Improved passive microwave retrievals of rain rate over land and ocean. Part I: Algorithm description. J. Atmos. Oceanic Technol., 30, 24932508, doi:10.1175/JTECH-D-12-00144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., and P. J. Adams, 2009: Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos. Chem. Phys., 9, 13391356, doi:10.5194/acp-9-1339-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., M. J. Evans, C. E. Scott, S. D. D’Andrea, D. K. Farmer, E. Swietlicki, and D. V. Spracklen, 2013: Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee+SO2 chemistry. Atmos. Chem. Phys., 13, 31633176, doi:10.5194/acp-13-3163-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GOES-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 27, NASA Tech. Memo. NASA/TM-2008–104606, 101 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf.

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

    • Crossref
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, doi:10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Wood, L. J. Donner, and S. C. Sherwood, 2013: Aerosol cloud-mediated radiative forcing: Highly uncertain and opposite effects from shallow and deep clouds. Climate Science for Serving Society: Research, Modeling, and Prediction Priorities, G. R. Asrar and J. W. Hurrell, Eds., Springer, 105–149.

    • Crossref
    • Export Citation
  • Sherwood, S. C., P. Minnis, and M. McGill, 2004: Deep convective cloud-top heights and their thermodynamic control during CRYSTAL–FACE. J. Geophys. Res., 109, D20119, doi:10.1029/2004JD004811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimoda, H., 2005: GCOM missions. Proc. IEEE Int. Conf. on Geoscience and Remote Sensing Symp., Seoul, South Korea, Institute of Electrical and Electronics Engineers, 4201–4204, doi:10.1109/IGARSS.2005.1525844.

    • Crossref
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 62076231, doi:10.1002/2014JD023033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, doi:10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, doi:10.1175/2010JAS3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and D. E. Zhang, 1988: An introduction to some historical governmental weather records of China. Bull. Amer. Meteor. Soc., 69, 753758, doi:10.1175/1520-0477(1988)069<0753:AITSHG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., J. S. Theon, W. E. Shenk, L. J. Allison, and E. B. Rodgers, 1976: Meteorological interpretations of the images from the Nimbus 5 electrically scanned microwave radiometer. J. Appl. Meteor., 15, 166172, doi:10.1175/1520-0450(1976)015<0166:MIOTIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., and M. W. Moncrieff, 1994: Density current circulations in shear flows. J. Atmos. Sci., 51, 434446, doi:10.1175/1520-0469(1994)051<0434:DCCISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, and R. Ferraro, 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, https://doi.org/10.1002/2014JD022534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 359 120 24
PDF Downloads 305 68 13