Surface Moistening Trends in the Northern North American Great Plains Increase the Likelihood of Convective Initiation

Tobias Gerken Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

Search for other papers by Tobias Gerken in
Current site
Google Scholar
PubMed
Close
,
Gabriel T. Bromley Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

Search for other papers by Gabriel T. Bromley in
Current site
Google Scholar
PubMed
Close
, and
Paul C. Stoy Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

Search for other papers by Paul C. Stoy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land management impacts atmospheric boundary layer processes, and recent trends reducing the practice of summer fallow have led to increases in precipitation and decreases in temperature in the Canadian Prairie provinces during summer. It is unclear if such trends also impact the hydrometeorology of the adjacent U.S. northern Great Plains, parts of which have seen similar changes in land management. Here, MERRA-2 reanalysis data, eddy covariance observations, and a mixed-layer (ML) atmospheric modeling framework are combined to demonstrate that the likelihood of convectively preconditioned conditions has increased by approximately 10% since the mid-1980s and is now more sensitive to further decreases in the Bowen ratio (Bo) and maximum daily net radiation in northeastern Montana. Convective season Bo in the study area has decreased from approximately 2 to 1 from the 1980s until the present, largely due to simultaneous increases in latent heat flux and decreases in sensible heat flux, consistent with observed decreases of summer fallow and increases in cropping. Daily net radiation has not changed despite a significant decrease in May and June humidity lapse rates from the 1980s to present. Future research should determine the area of the U.S. Great Plains that has seen changes in the dynamics of the atmospheric boundary layer height and lifted condensation level and their crossings as a necessary condition for convective precipitation to occur and ascertain if ongoing changes in land management will lead to future changes in convective outcomes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tobias Gerken, tobias.gerken@montana.edu

Abstract

Land management impacts atmospheric boundary layer processes, and recent trends reducing the practice of summer fallow have led to increases in precipitation and decreases in temperature in the Canadian Prairie provinces during summer. It is unclear if such trends also impact the hydrometeorology of the adjacent U.S. northern Great Plains, parts of which have seen similar changes in land management. Here, MERRA-2 reanalysis data, eddy covariance observations, and a mixed-layer (ML) atmospheric modeling framework are combined to demonstrate that the likelihood of convectively preconditioned conditions has increased by approximately 10% since the mid-1980s and is now more sensitive to further decreases in the Bowen ratio (Bo) and maximum daily net radiation in northeastern Montana. Convective season Bo in the study area has decreased from approximately 2 to 1 from the 1980s until the present, largely due to simultaneous increases in latent heat flux and decreases in sensible heat flux, consistent with observed decreases of summer fallow and increases in cropping. Daily net radiation has not changed despite a significant decrease in May and June humidity lapse rates from the 1980s to present. Future research should determine the area of the U.S. Great Plains that has seen changes in the dynamics of the atmospheric boundary layer height and lifted condensation level and their crossings as a necessary condition for convective precipitation to occur and ascertain if ongoing changes in land management will lead to future changes in convective outcomes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tobias Gerken, tobias.gerken@montana.edu
Save
  • Betts, A. K., R. Desjardins, D. Worth, and D. Cerkowniak, 2013: Impact of land use change on the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos., 118, 11 99612 011, https://doi.org/10.1002/2013JD020717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, D. Worth, and B. Beckage, 2014: Climate coupling between temperature, humidity, precipitation, and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos., 119, 13 30513 326, https://doi.org/10.1002/2014JD022511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonetti, S., G. Manoli, J.-C. Domec, M. Putti, M. Marani, and G. G. Katul, 2015: The influence of water table depth and the free atmospheric state on convective rainfall predisposition: Water table and convective rainfall. Water Resour. Res., 51, 22832297, https://doi.org/10.1002/2014WR016431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao, and A. Cescatti, 2017: Local temperature response to land cover and management change driven by non-radiative processes. Nat. Climate Change, 7, 296302, https://doi.org/10.1038/nclimate3250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., J. M. Hanesiak, and W. R. Burrows, 2011: Impacts of land atmosphere feedbacks on deep, moist convection on the Canadian Prairies. Earth Interact., 15, https://doi.org/10.1175/2011EI407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cioni, G., and C. Hohenegger, 2017: Effect of soil moisture on diurnal convection and precipitation in large-eddy simulations. J. Hydrometeor., 18, 18851903, https://doi.org/10.1175/JHM-D-16-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crago, R., and W. Brutsaert, 1996: Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio. J. Hydrol., 178, 241255, https://doi.org/10.1016/0022-1694(95)02803-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davin, E. L., S. I. Seneviratne, P. Ciais, A. Olioso, and T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA, 111, 97579761, https://doi.org/10.1073/pnas.1317323111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, M., M. A. Brunke, Z. Wang, K. Sakaguchi, X. Zeng, and M. G. Bosilovich, 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, https://doi.org/10.1175/JCLI-D-11-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, https://doi.org/10.1002/2013GL058826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., R. H. Reichle, and R. D. Koster, 2018: Assessment of MERRA-2 land surface energy flux estimates. J. Climate, 31, 671691, https://doi.org/10.1175/JCLI-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23, 283306, https://doi.org/10.1007/BF00121117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and E. F. Wood, 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, https://doi.org/10.1175/2011JHM1380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2012: Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. J. Geophys. Res., 117, D05123, https://doi.org/10.1029/2011JD016988.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture-boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gameda, S., B. Qian, C. Campbell, and R. Desjardins, 2007: Climatic trends associated with summerfallow in the Canadian Prairies. Agric. For. Meteor., 142, 170185, https://doi.org/10.1016/j.agrformet.2006.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, https://doi.org/10.1029/2009JD012811.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, A. Chehbouni, G. Boulet, and B. Duchemin, 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 1329, https://doi.org/10.1016/j.agrformet.2006.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546, https://doi.org/10.1175/2011JHM1261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., C. R. Ferguson, and A. A. M. Holtslag, 2013a: Diagnosing evaporative fraction over land from boundary-layer clouds. J. Geophys. Res. Atmos., 118, 81858196, https://doi.org/10.1002/jgrd.50416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013b: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, https://doi.org/10.1175/JHM-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerken, T., W. Babel, F. Sun, M. Herzog, Y. Ma, T. Foken, and H.-F. Graf, 2013: Uncertainty in atmospheric profiles and its impact on modeled convection development at Nam Co Lake, Tibetan Plateau. J. Geophys. Res. Atmos., 118, 12 31712 331, https://doi.org/10.1002/2013JD020647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronemeier, T., F. Kanani-Shring, and S. Raasch, 2017: Do shallow cumulus clouds have the potential to trigger secondary circulations via shading? Bound.-Layer Meteor., 162, 143169, https://doi.org/10.1007/s10546-016-0180-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. Jones, T. Osborn, and D. Lister, 2014: Updated high-resolution grids of monthly climatic observations the CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, J.-Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H.-S. Kim, and R. Oren, 2007a: Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biol., 13, 887896, https://doi.org/10.1111/j.1365-2486.2007.01315.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, J.-Y., A. Porporato, P. C. Stoy, M. S. Siqueira, A. C. Oishi, M. Detto, H.-S. Kim, and G. G. Katul, 2007b: Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour. Res., 43, W03421, https://doi.org/10.1029/2006WR004954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konings, A. G., G. G. Katul, and A. Porporato, 2010: The rainfall-no rainfall transition in a coupled land-convective atmosphere system. Geophys. Res. Lett., 37, L14401, https://doi.org/10.1029/2010GL043967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konings, A. G., S. C. Dekker, M. Rietkerk, and G. G. Katul, 2011: Drought sensitivity of patterned vegetation determined by rainfall-land surface feedbacks. J. Geophys. Res., 116, G04008, https://doi.org/10.1029/2011JG001748.

    • Search Google Scholar
    • Export Citation
  • Konings, A. G., A. P. Williams, and P. Gentine, 2017: Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci., 10, 284288, https://doi.org/10.1038/ngeo2903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Körner, C., 1995: Leaf diffusive conductances in the major vegetation types of the globe. Ecophysiology of Photosynthesis, E.-D. Schulze and M. M. Caldwell, Eds., Springer Study Edition, Vol. 100, Springer, 463–490, https://doi.org/10.1007/978-3-642-79354-7_22.

    • Crossref
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., T. J. Schmugge, K. S. Humes, T. J. Jackson, R. Parry, M. A. Weltz, and M. S. Moran, 1993: Relationships between evaporative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands. J. Appl. Meteor., 32, 17811790, https://doi.org/10.1175/1520-0450(1993)032<1781:RBEFAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt, 2010: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biol., 16, 187208, https://doi.org/10.1111/j.1365-2486.2009.02041.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohou, F., and E. G. Patton, 2014: Surface energy balance and buoyancy response to shallow cumulus shading. J. Atmos. Sci., 71, 665682, https://doi.org/10.1175/JAS-D-13-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, J. A., R. L. Lawrence, P. R. Miller, L. A. Marshall, and M. C. Greenwood, 2014: Adoption of cropping sequences in northeast Montana: A spatio-temporal analysis. Agric. Ecosyst. Environ., 197, 7787, https://doi.org/10.1016/j.agee.2014.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubowski, R. N., M. Vesterby, S. Bucholtz, A. Baez, and M. J. Robterts, 2006: Major uses of land in the United States, 2002. USDA Economic Information Bulletin 14, 47 pp., https://www.ers.usda.gov/webdocs/publications/43967/13011_eib14_1_.pdf?v=42061.

  • Luyssaert, S., and Coauthors, 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, https://doi.org/10.1038/nclimate2196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lytinska, Z., J. Parfiniewicz, and H. Piwkowski, 1976: The prediction of air mass thunderstorms and hails. Proc. WMO Symp. on the Interpretation of Broad-Scale NWP Product for Local Forecasting Purposes, WMO/TD-450, Warsaw, Poland, WMO, 128130.

  • Mahmood, R., and Coauthors, 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, https://doi.org/10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manoli, G., J.-C. Domec, K. Novick, A. C. Oishi, A. Noormets, M. Marani, and G. Katul, 2016: Soil–plant–atmosphere conditions regulating convective cloud formation above southeastern US pine plantations. Global Change Biol., 22, 22382254, https://doi.org/10.1111/gcb.13221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquardt Collow, A. B., and M. A. Miller, 2016: The seasonal cycle of the radiation budget and cloud radiative effect in the Amazon rain forest of Brazil. J. Climate, 29, 77037722, https://doi.org/10.1175/JCLI-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., D. J. Stensrud, and K. C. Crawford, 2004: The impact of Oklahoma’s winter wheat belt on the mesoscale environment. Mon. Wea. Rev., 132, 405421, https://doi.org/10.1175/1520-0493(2004)132<0405:TIOOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, T., 2000: AmeriFlux US-FPe Fort Peck. AmeriFlux, accessed 23 September 2016, https://doi.org/10.17190/AMF/1246053.

    • Crossref
    • Export Citation
  • Mueller, N. D., E. E. Butler, K. A. McKinnon, A. Rhines, M. Tingley, N. M. Holbrook, and P. Huybers, 2015: Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Climate Change, 6, 317322, https://doi.org/10.1038/nclimate2825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novick, K. A., and Coauthors, 2016: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Climate Change, 6, 10231027, https://doi.org/10.1038/nclimate3114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oren, R., J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers, N. Phillips, and K. V. R. Schäfer, 1999: Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ., 22, 15151526, https://doi.org/10.1046/j.1365-3040.1999.00513.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski, C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a warming hole. Geophys. Res. Lett., 31, L17109, https://doi.org/10.1029/2004GL020528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and S. A. Klein, 2014: Land-atmosphere coupling manifested in warm-season observations on the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 119, 509528, https://doi.org/10.1002/2013JD020492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porporato, A., 2009: Atmospheric boundary-layer dynamics with constant Bowen ratio. Bound.-Layer Meteor., 132, 227240, https://doi.org/10.1007/s10546-009-9400-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., 1993: Prairie agroclimate boundary-layer model: A simulation of the atmosphere/crop-soil interface. Atmos.–Ocean, 31, 399419, https://doi.org/10.1080/07055900.1993.9649478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., 2007: Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the Canadian Prairies. Agric. For. Meteor., 142, 186202, https://doi.org/10.1016/j.agrformet.2006.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. P. Mahanama, R. D. Koster, and G. J. M. De Lannoy, 2017: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 29372960, https://doi.org/10.1175/JCLI-D-16-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASAs Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigby, J. R., J. Yin, J. D. Albertson, and A. Porporato, 2015: Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions. Bound.-Layer Meteor., 156, 7389, https://doi.org/10.1007/s10546-015-0018-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., C. R. Ferguson, and E. F. Wood, 2013: Temporal variability of land–atmosphere coupling and its implications for drought over the southeast United States. J. Hydrometeor., 14, 622635, https://doi.org/10.1175/JHM-D-12-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., C. R. Ferguson, and E. F. Wood, 2014: Impact of land-atmospheric coupling in CFSv2 on drought prediction. Climate Dyn., 43, 421434, https://doi.org/10.1007/s00382-013-1982-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., M. A. Friedl, and W. P. Kustas, 2005: An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J. Appl. Meteor., 44, 917932, https://doi.org/10.1175/JAM2240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., J. Roundy, and P. A. Dirmeyer, 2015: Quantifying the land-atmosphere coupling behavior in modern reanalysis products over the U.S. Southern Great Plains. J. Climate, 28, 58135829, https://doi.org/10.1175/JCLI-D-14-00680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., R. W. Arritt, C. Clark, R. Rabin, and J. Brown, 1995: Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain. Mon. Wea. Rev., 123, 383400, https://doi.org/10.1175/1520-0493(1995)123<0383:SEOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, M., G. Katul, and A. Porporato, 2009: Soil moisture feedbacks on convection triggers: The role of soil–plant hydrodynamics. J. Hydrometeor., 10, 96112, https://doi.org/10.1175/2008JHM1027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H.-J., C. R. Ferguson, and J. K. Roundy, 2016: Land–atmosphere coupling at the Southern Great Plains Atmospheric Radiation Measurement (ARM) field site and its role in anomalous afternoon peak precipitation. J. Hydrometeor., 17, 541556, https://doi.org/10.1175/JHM-D-15-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Tawfik, A. B., and P. A. Dirmeyer, 2014: A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett., 41, 173178, https://doi.org/10.1002/2013GL057984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., P. A. Dirmeyer, and J. A. Santanello, 2015: The heated condensation framework. Part II: Climatological behavior of convective initiation and land–atmosphere coupling over the conterminous United States. J. Hydrometeor., 16, 19461961, https://doi.org/10.1175/JHM-D-14-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, https://doi.org/10.1029/2007GL030572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558567, https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag, 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, https://doi.org/10.1002/qj.431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. Gounou, F. Guichard, and F. Couvreux, 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, https://doi.org/10.1175/2010JHM1272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Stratum, B. J. H., J. Vilà-Guerau de Arellano, C. C. van Heerwaarden, and H. G. Ouwersloot, 2014: Subcloud-layer feedbacks driven by the mass flux of shallow cumulus convection over land. J. Atmos. Sci., 71, 881895, https://doi.org/10.1175/JAS-D-13-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vick, E. S., P. C. Stoy, A. C. Tang, and T. Gerken, 2016: The surface-atmosphere exchange of carbon dioxide, water, and sensible heat across a dryland wheat-fallow rotation. Agric. Ecosyst. Environ., 232, 129140, https://doi.org/10.1016/j.agee.2016.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806, https://doi.org/10.1175/2008JAS2945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, H., 2008: Numerical simulations of the role of land surface conditions in the evolution and structure of summertime thunderstorms over a flat highland. Mon. Wea. Rev., 136, 173188, https://doi.org/10.1175/2007MWR2053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., J. D. Albertson, J. R. Rigby, and A. Porporato, 2015: Land and atmospheric controls on initiation and intensity of moist convection: CAPE dynamics and LCL crossings. Water Resour. Res., 51, 84768493, https://doi.org/10.1002/2015WR017286.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 659 128 7
PDF Downloads 367 80 5