Hydroclimatology of the Missouri River Basin

Erika K. Wise Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Search for other papers by Erika K. Wise in
Current site
Google Scholar
PubMed
Close
,
Connie A. Woodhouse School of Geography and Development, The University of Arizona, Tucson, Arizona

Search for other papers by Connie A. Woodhouse in
Current site
Google Scholar
PubMed
Close
,
Gregory J. McCabe Denver Federal Center, U.S. Geological Survey, Denver, Colorado

Search for other papers by Gregory J. McCabe in
Current site
Google Scholar
PubMed
Close
,
Gregory T. Pederson Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, Montana

Search for other papers by Gregory T. Pederson in
Current site
Google Scholar
PubMed
Close
, and
Jeannine-Marie St-Jacques Concordia University, Montreal, Quebec, Canada

Search for other papers by Jeannine-Marie St-Jacques in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0155.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Erika K. Wise, ekwise@email.unc.edu

Abstract

Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0155.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Erika K. Wise, ekwise@email.unc.edu

Supplementary Materials

    • Supplemental Materials (DOCX 1.45 MB)
Save
  • Barnhart, T. B., N. P. Molotch, B. Livneh, A. A. Harpold, J. F. Knowles, and D. Schneider, 2016: Snowmelt rate dictates streamflow. Geophys. Res. Lett., 43, 80068016, https://doi.org/10.1002/2016GL069690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cary, L. E., and C. Parrett, 1996: Synthesis of natural flows at selected sites in the upper Missouri River basin, Montana, 1928–89. USGS Water Resources Investigations Rep. 95-4261, 114 pp., https://pubs.usgs.gov/wri/1995/4261/report.pdf.

  • Chase, K. J., 2014: Streamflow statistics for unregulated and regulated conditions for selected locations on the Upper Yellowstone and Bighorn Rivers, Montana and Wyoming, 1928–2002. USGS Scientific Investigations Rep. 2014-5115, 117 pp., http://dx.doi.org/10.3133/sir20145115.

    • Crossref
    • Export Citation
  • Coleman, J. S. M., and D. Budikova, 2013: Eastern U.S. summer streamflow during extreme phases of the North Atlantic oscillation. J. Geophys. Res. Atmos., 118, 41814193, https://doi.org/10.1002/jgrd.50326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., B. Udall, and A. Georgakakos, 2015: Western water and climate change. Ecol. Appl., 25, 20692093, https://doi.org/10.1890/15-0938.1.

  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galat, D. L., C. R. Berry, E. J. Peters, and R. G. White, 2005: Missouri River basin. Rivers of North America, A. C. Benke and C. E. Cushing, Eds., Elsevier Academic Press, 427–480.

    • Crossref
    • Export Citation
  • Gray, S. T., and G. J. McCabe, 2010: Combined water balance and tree-ring approaches to understanding the potential hydrologic effects of climate change on the Yellowstone River. Water Resour. Res., 46, W05513, https://doi.org/10.1029/2008WR007650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haj, A. E., D. E. Christiansen, and R. J. Viger, 2014: The effects of Missouri River mainstem reservoir system operations on 2011 flooding using a precipitation-runoff modeling system model. USGS Professional Paper 1798–K, 33 pp, https://pubs.usgs.gov/pp/1798k/pdf/pp1798k.pdf.

    • Crossref
    • Export Citation
  • Henderson, K. G., and P. J. Robinson, 1994: Relationships between the Pacific/North American teleconnection patterns and precipitation events in the south-eastern USA. Int. J. Climatol., 14, 307323, https://doi.org/10.1002/joc.3370140305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, and R. Webb, 2013: Understanding and explaining climate extremes in the Missouri River basin associated with the 2011 flooding. NOAA Climate Assessment Rep. to USACE, 34 pp., https://www.esrl.noaa.gov/psd/csi/factsheets/pdf/noaa-mrb-climate-assessment-report.pdf.

  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 great plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., S. Feng, and R. J. Oglesby, 2011: Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J. Climate, 24, 55555570, https://doi.org/10.1175/2011JCLI4060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, https://doi.org/10.1175/JCLI-D-12-00649.1.

  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Lettenmaier, D. P., A. W. Wood, R. N. Palmer, E. F. Wood, and E. Z. Stakhiv, 1999: Water resources implications of global warming: a U.S. regional perspective. Climatic Change, 43, 537579, https://doi.org/10.1023/A:1005448007910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., M. P. Hoerling, A. Badger, and J. Eischeid, 2016: Causes for hydrologic extremes in the upper Missouri River basin. NOAA Climate Assessment Rep. to USACE, 39 pp., https://www.drought.gov/drought/sites/drought.gov.drought/files/2016-mrb-climate-assessment-report-final.pdf.

  • Malevich, S. B., and C. A. Woodhouse, 2017: Pacific sea surface temperatures, midlatitude atmospheric circulation, and widespread interannual anomalies in western U.S. streamflow. Geophys. Res. Lett., 44, 51235132, https://doi.org/10.1002/2017GL073536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Maurer, E. P., and D. P. Lettenmaier, 2004: Potential effects of long-lead hydrologic predictability on Missouri River main-stem reservoirs. J. Climate, 17, 174186, https://doi.org/10.1175/1520-0442(2004)017<0174:PEOLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., 2017: Uncertainty in Pacific decadal oscillation indices does not contribute to teleconnection instability. Int. J. Climatol., 37, 35093516, https://doi.org/10.1002/joc.4918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2002: A step increase in streamflow in the conterminous United States. Geophys. Res. Lett., 29, 2185, https://doi.org/10.1029/2002GL015999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2008: Joint variability of global runoff and global sea-surface temperatures. J. Hydrometeor., 9, 816824, https://doi.org/10.1175/2008JHM943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2011a: Century-scale variability in global annual runoff examined using a water balance model. Int. J. Climatol., 31, 17391748, https://doi.org/10.1002/joc.2198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2011b: Independent effects of temperature and precipitation on modeled runoff in the conterminous United States. Water Resour. Res., 47, W11522, https://doi.org/10.1029/2011WR010630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., N. J. Rosenberg, and K. Mendoza, 2011: Simulated impacts of three decadal climate variability phenomena on water yields in the Missouri River basin. J. Amer. Water Resour. Assoc., 47, 126135, https://doi.org/10.1111/j.1752-1688.2010.00496.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., C. L. Knutson, N. J. Rosenberg, J. R. Olsen, N. A. Wall, T. K. Bernadt, and M. J. Hayes, 2013: Decadal climate information needs of stakeholders for decision support in water and agriculture production sectors: A case study in the Missouri River basin. Wea. Climate Soc., 5, 2742, https://doi.org/10.1175/WCAS-D-11-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., K. Mendoza, P. Daggupati, R. Srinivasan, N. J. Rosenberg, and D. Deb, 2016: High-resolution simulations of decadal climate variability impacts on water yield in the Missouri River basin with the Soil and Water Assessment Tool (SWAT). J. Hydrometeor., 17, 24552476, https://doi.org/10.1175/JHM-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Najibi, N., N. Devineni, and M. Lu, 2017: Hydroclimate drivers and atmospheric teleconnections of long duration floods: An application to large reservoirs in the Missouri River basin. Adv. Water Resour., 100, 153167, https://doi.org/10.1016/j.advwatres.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, P. A., M. T. Anderson, and J. F. Stamm, 2014: Trends in annual, seasonal, and monthly streamflow characteristics at 227 streamgages in the Missouri River watershed, water years 1960–2011. USGS Scientific Investigations Rep. 2014-5053, 128 pp., https://pubs.usgs.gov/sir/2014/5053/pdf/sir2014-5053.pdf.

    • Crossref
    • Export Citation
  • Olsen, J. R., J. R. Stedinger, N. C. Matalas, and E. Z. Stakhiu, 1999: Climate variability and flood frequency estimation for the upper Mississippi and lower Missouri Rivers. J. Amer. Water Resour. Assoc., 35, 15091523, https://doi.org/10.1111/j.1752-1688.1999.tb04234.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, A. P. Ballantyne, A. E. Klene, and S. W. Running, 2015a: Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett., 42, 153161, https://doi.org/10.1002/2014GL062803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., A. Ballantyne, K. Jencso, M. Sweet, and S. W. Running, 2015b: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int. J. Climatol., 35, 22582279, https://doi.org/10.1002/joc.4127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., and Coauthors, 2011a: The unusual nature of recent snowpack declines in the North American cordillera. Science, 333, 332335, https://doi.org/10.1126/science.1201570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., S. T. Gray, T. Ault, W. Marsh, D. B. Fagre, A. G. Bunn, C. A. Woodhouse, and L. J. Graumlich, 2011b: Climatic controls on the snowmelt hydrology of the northern Rocky Mountains. J. Climate, 24, 16661687, https://doi.org/10.1175/2010JCLI3729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., J. L. Betancourt, and G. J. McCabe, 2013: Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S. Geophys. Res. Lett., 40, 18111816, https://doi.org/10.1002/grl.50424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., Z. Pan, R. B. Herrmann, and Y. Hong, 2014: Hydrological variability and uncertainty of lower Missouri River basin under changing climate. J. Amer. Water Resour. Assoc., 50, 246260, https://doi.org/10.1111/jawr.12126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27, 23812399, https://doi.org/10.1029/91WR00690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2, 196211, https://doi.org/10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and P. D. Jones, 1987: An extension of the Tahiti–Darwin Southern Oscillation index. Mon. Wea. Rev., 115, 21612165, https://doi.org/10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830, https://doi.org/10.1175/JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, https://doi.org/10.1175/JCLI3527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method for linear and polynomial regression analysis. Proc. K. Ned. Akad. Wet., Ser. A, 53, 386392, 512–525, 1397–1412.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Bureau of Reclamation, 2012: St. Mary River and Milk River basins study summary report. USBR Rep., 37 pp, https://www.usbr.gov/watersmart/bsp/docs/finalreport/Milk-StMary/Milk-StMary_SummaryReport.pdf.

  • U.S. Department of Agriculture, 1994: State Soil Geographic (STATSGO) data base: Data use information. USDA Miscellaneous Publ. 1492, 113 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., K. Hakala, R. R. Gillies, and W. J. Capehart, 2014: The Pacific quasidecadal oscillation (QDO): An important precursor toward anticipating major flood events in the Missouri River basin? Geophys. Res. Lett., 41, 991997, https://doi.org/10.1002/2013GL059042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, E. K., 2010: Spatiotemporal variability of the precipitation dipole transition zone in the western United States. Geophys. Res. Lett., 37, L07706, https://doi.org/10.1029/2009GL042193.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1117 246 15
PDF Downloads 983 233 9