• APCC, 2014: Austrian Assessment Report Climate Change 2014 (AAR14): Synopsis – Main Findings. Climate Change Centre Austria, 12 pp., https://www.ccca.ac.at/fileadmin/00_DokumenteHauptmenue/03_Aktivitaeten/APCC/summarys/Synopse_englisch_finaleversion_181214.pdf.

  • Auer, I., J. Nemec, C. Gruber, B. Chimani, and K. Türk, 2010: HOM-START: Homogenisation of climate series on a daily basis, an application to the StartClim dataset. Climate and Energy Fund Project Rep., 34 pp., https://www.zamg.ac.at/cms/de/dokumente/klima/dok_projekte/homstart/homstart-endbericht.

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 1997: Variations of snow depth and duration in the Swiss Alps over the last 50 years: Links to changes in large-scale climatic forcings. Climatic Change, 36, 281300, https://doi.org/10.1023/A:1005310214361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2012: Is snow in the Alps receding or disappearing? Wiley Interdiscip. Rev. Climate Change, 3, 349358, https://doi.org/10.1002/wcc.179.

  • Beniston, M., F. Keller, and S. Goyette, 2003a: Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theor. Appl. Climatol., 74, 1931, https://doi.org/10.1007/s00704-002-0709-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., F. Keller, B. Koffi, and S. Goyette, 2003b: Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor. Appl. Climatol., 76, 125140, https://doi.org/10.1007/s00704-003-0016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunetti, M., M. Maugeri, T. Nanni, I. Auer, R. Böhm, and W. Schöner, 2006: Precipitation variability and changes in the Greater Alpine Region over the 1800–2003 period. J. Geophys. Res., 111, 129, https://doi.org/10.1029/2005JD006674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunetti, M., G. Lentini, M. Maugeri, T. Nanni, I. Auer, R. Böhm, and W. Schöner, 2009: Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int. J. Climatol., 29, 21972225, https://doi.org/10.1002/joc.1857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EEA, 2012: Climate change, impacts and vulnerability in Europe 2012—An indicator-based report. EEA Rep. 12/2012, 304 pp., https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012.

  • Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of the MODIS snow products. Hydrol. Processes, 21, 15341547, https://doi.org/10.1002/hyp.6715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Solomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hantel, M., M. Ehrendorfer, and A. Haslinger, 2000: Climate sensitivity of snow cover duration in Austria. Int. J. Climatol., 20, 615640, https://doi.org/10.1002/(SICI)1097-0088(200005)20:6<615::AID-JOC489>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanzer, F., K. Helfricht, T. Marke, and U. Strasser, 2016: Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments. Cryosphere, 10, 18591881, https://doi.org/10.5194/tc-10-1859-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harder, P., and J. Pomeroy, 2014: Hydrological model uncertainty due to precipitation-phase partitioning methods. Hydrol. Processes, 28, 43114327, https://doi.org/10.1002/hyp.10214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., M. L. Kaplan, P. Z. Klos, T. Link, J. P. McNamara, S. Rajagopal, R. Schumer, and C. M. Steele, 2017: Rain or snow: Hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci., 21, 122, https://doi.org/10.5194/hess-21-1-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., D. L. Kane, C. S. Benson, and K. R. Everett, 1996: Energy balance and hydrological processes in an Arctic watershed. Landscape Function: Implications for Ecosystem Response to Disturbance: A Case Study in Arctic Tundra, Ecological Studies Series, Vol. 120, Springer, 131–154, https://doi.org/10.1007/978-3-662-01145-4_6.

    • Crossref
    • Export Citation
  • Hüsler, F., T. Jonas, M. Riffler, J. P. Musial, and S. Wunderle, 2014: A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere, 8, 7390, https://doi.org/10.5194/tc-8-73-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. IPCC, 151 pp.

  • Jin, J., and N. L. Miller, 2007: Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. J. Hydrometeor., 8, 245258, https://doi.org/10.1175/JHM565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D., L. D. Hinzman, C. S. Benson, and G. E. Liston, 1991: Snow hydrology of a headwater Arctic basin. 1. Physical measurements and process studies. Water Resour. Res., 27, 10991109, https://doi.org/10.1029/91WR00262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, F., S. Goyette, and M. Beniston, 2005: Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in Alpine terrain. Climatic Change, 72, 299319, https://doi.org/10.1007/s10584-005-5360-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, G., Y. Vitasse, C. Rixen, C. Marty, and M. Rebetez, 2016: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change, 139, 637649, https://doi.org/10.1007/s10584-016-1806-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, https://doi.org/10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, P., D. P. Boyle, and F. Bäse, 2005: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 8997, https://doi.org/10.5194/adgeo-5-89-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laternser, M., and M. Schneebeli, 2003: Long-term snow climate trends of the Swiss Alps (1931–99). Int. J. Climatol., 23, 733750, https://doi.org/10.1002/joc.912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234, https://doi.org/10.1175/JHM486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., D. G. Tarboton, and K. R. Cooley, 1998: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Processes, 12, 16711683, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J. M., A. Liniger, A. Menzel, N. Estrella, P. M. Della-Marta, C. Pfister, T. Rutishauser, and E. Xoplaki, 2007: Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys. Res. Lett., 34, L12704, https://doi.org/10.1029/2007GL029951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolini, G., A. Bellin, M. Disse, and G. Chiogna, 2017: Variability in snow depth time series in the Adige catchment. J. Hydrol. Reg. Stud., 13, 240254, https://doi.org/10.1016/j.ejrh.2017.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marke, T., 2008: Development and application of a model interface to couple land surface models with regional climate models for climate change risk assessment in the upper Danube watershed. Ph.D. thesis, Ludwig-Maximilians-University, 220 pp., https://edoc.ub.uni-muenchen.de/9162/.

  • Marke, T., U. Strasser, F. Hanzer, J. Stötter, R. A. I. Wilcke, and A. Gobiet, 2015: Scenarios of future snow conditions in Styria (Austrian Alps). J. Hydrometeor., 16, 261277, https://doi.org/10.1175/JHM-D-14-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P., 1999: Snowcover formation and melt: Recent advances and future prospects. Hydrol. Processes, 13, 21172134, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2117::AID-HYP869>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marty, C., 2008: Regime shift of snow days in Switzerland. Geophys. Res. Lett., 35, L12501, https://doi.org/10.1029/2008GL033998.

  • Marty, C., A.-M. Tilg, and T. Jonas, 2017: Recent evidence of large-scale receding snow water equivalents in the European Alps. J. Hydrometeor., 18, 10211031, https://doi.org/10.1175/JHM-D-16-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemec, J., C. Gruber, B. Chimani, and I. Auer, 2013: Trends in extreme temperature indices in Austria based on a new homogenised dataset of daily minimum and maximum temperature series. Int. J. Climatol., 33, 15381550, https://doi.org/10.1002/joc.3532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., and G. Blöschl, 2006: Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci., 10, 679689, https://doi.org/10.5194/hess-10-679-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., and G. Blöschl, 2008a: Spatio-temporal combination of MODIS images— Potential for snow cover mapping. Water Resour. Res., 44, W03406, https://doi.org/10.1029/2007WR006204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., and G. Blöschl, 2008b: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240258, https://doi.org/10.1016/j.jhydrol.2008.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellicciotti, F., B. Brock, U. Strasser, P. Burlando, M. Funk, and J. Corripio, 2005: An enhanced temperature-index glacier melt model including the shortwave radiation balance: Development and testing for Haut Glacier d’Arolla, Switzerland. J. Glaciol., 51, 573587, https://doi.org/10.3189/172756505781829124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prantl, H., L. Nicholson, R. Sailer, F. Hanzer, I. F. Juen, and P. Rastner, 2017: Glacier snowline determination from terrestrial laser scanning intensity data. Geosciences, 7, 60, https://doi.org/10.3390/geosciences7030060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, K., T. B. Hank, W. Mauser, and C. Atzberger, 2012: Derivation of biophysical variables from Earth observation data: Validation and statistical measures. J. Appl. Remote Sens., 6, 063557, https://doi.org/10.1117/1.JRS.6.063557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rittger, K., T. H. Painter, and J. Dozier, 2013: Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour., 51, 367380, https://doi.org/10.1016/j.advwatres.2012.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohrer, M. B., 1992: Die Schneedecke im Schweizer Alpenraum und ihre Modellierung. Zuricher Geogr. Schriften, 49, 178.

  • Scherrer, S. C., C. Appenzeller, and M. Laternser, 2004: Trends in Swiss Alpine snow days: The role of local- and large-scale climate variability. Geophys. Res. Lett., 31, L13215, https://doi.org/10.1029/2004GL020255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöner, W., I. Auer, and R. Böhm, 2009: Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrol. Processes, 23, 10521063, https://doi.org/10.1002/hyp.7209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serquet, G., C. Marty, J. P. Dulex, and M. Rebetez, 2011: Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys. Res. Lett., 38, L07703, https://doi.org/10.1029/2011GL046976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strasser, U., 2008: Modelling of the mountain snow cover in the Berchtesgaden National Park. Forschungsberichte des Nationalpark Berchtesgaden 55, 104 pp.

  • Strasser, U., J. G. Corripio, B. Brock, F. Pellicciotti, P. Burlando, and M. Funk, 2004: Spatial and temporal variability of meteorological variables at Haut Glacier d’Arolla (Switzerland) during the ablation season 2001: Measurements and simulations. J. Geophys. Res., 109, D03103, https://doi.org/10.1029/2003JD003973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strasser, U., M. Bernhardt, M. Weber, G. E. Liston, and W. Mauser, 2008: Is snow sublimation important in the alpine water balance? Cryosphere, 2, 5366, https://doi.org/10.5194/tc-2-53-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. W., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, https://doi.org/10.1016/S0022-1694(96)03128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, M., 2008: Objective quantitative spatial verification of distributed snow cover simulations—An experiment for the whole of Switzerland. Hydrol. Sci. J., 53, 179191, https://doi.org/10.1623/hysj.53.1.179.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 481 175 7
PDF Downloads 296 110 9

Simulation of Past Changes in the Austrian Snow Cover 1948–2009

Thomas MarkeUniversity of Innsbruck, Innsbruck, Austria

Search for other papers by Thomas Marke in
Current site
Google Scholar
PubMed
Close
,
Florian HanzerUniversity of Innsbruck, Innsbruck, and Wegener Center for Climate and Global Change, Graz, Austria

Search for other papers by Florian Hanzer in
Current site
Google Scholar
PubMed
Close
,
Marc OlefsZentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Marc Olefs in
Current site
Google Scholar
PubMed
Close
, and
Ulrich StrasserUniversity of Innsbruck, Innsbruck, Austria

Search for other papers by Ulrich Strasser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A distributed snow model is applied to simulate the spatiotemporal evolution of the Austrian snow cover at 1 km × 1 km spatial and daily temporal resolution for the period 1948–2009. After a comprehensive model validation, changes in snow cover conditions are analyzed for all of Austria as well as for different Austrian subregions and elevation belts focusing on the change in snow cover days (SCDs). The comparison of SCDs for the period 1950–79 to those achieved for 1980–2009 for all of Austria shows a decrease in SCDs with a maximum of >35 SCDs near Villach (Carinthia). The analysis of SCD changes in different subregions of Austria reveals mean changes between −11 and −15 days with highest absolute change in SCDs for southern Austria. Two decrease maxima could be identified in elevations of 500–2000 m MSL (between −13 and −18 SCDs depending on the subregion considered) and above 2500 m MSL (over −20 SCDs in the case of central Austria). The temporal distribution of SCD change in the Austrian subregions is characterized by a reduction of SCDs in midwinter and at the end of winter rather than by fewer SCDs in early winter. With respect to the temporal distribution of SCD change in different elevation belts, changes in elevations below 1000 m MSL are characterized by a distinct reduction of SCDs in January. With increasing elevation the maximum change in SCDs shifts toward the summer season, reaching a maximum decrease in the months of June–August above 2500 m MSL.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Marke, thomas.marke@uibk.ac.at

Abstract

A distributed snow model is applied to simulate the spatiotemporal evolution of the Austrian snow cover at 1 km × 1 km spatial and daily temporal resolution for the period 1948–2009. After a comprehensive model validation, changes in snow cover conditions are analyzed for all of Austria as well as for different Austrian subregions and elevation belts focusing on the change in snow cover days (SCDs). The comparison of SCDs for the period 1950–79 to those achieved for 1980–2009 for all of Austria shows a decrease in SCDs with a maximum of >35 SCDs near Villach (Carinthia). The analysis of SCD changes in different subregions of Austria reveals mean changes between −11 and −15 days with highest absolute change in SCDs for southern Austria. Two decrease maxima could be identified in elevations of 500–2000 m MSL (between −13 and −18 SCDs depending on the subregion considered) and above 2500 m MSL (over −20 SCDs in the case of central Austria). The temporal distribution of SCD change in the Austrian subregions is characterized by a reduction of SCDs in midwinter and at the end of winter rather than by fewer SCDs in early winter. With respect to the temporal distribution of SCD change in different elevation belts, changes in elevations below 1000 m MSL are characterized by a distinct reduction of SCDs in January. With increasing elevation the maximum change in SCDs shifts toward the summer season, reaching a maximum decrease in the months of June–August above 2500 m MSL.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Marke, thomas.marke@uibk.ac.at
Save