• Adirosi, E., L. Baldini, F. Lombardo, F. Russo, F. Napolitano, E. Volpi, and A. Tokay, 2015: Comparison of different fittings of drop spectra for rainfall retrievals. Adv. Water Resour., 83, 5567, https://doi.org/10.1016/j.advwatres.2015.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., A. Chédin, N. Scott, and W. B. Rossow, 2002: A regularized neural network approach for retrieval of atmospheric and surface temperatures with the IASI instrument. J. Appl. Meteor., 41, 144159, https://doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andsager, K., K. V. Beard, and N. F. Laird, 1999: Laboratory measurements of axis ratios for large rain drops. J. Atmos. Sci., 56, 26732683, https://doi.org/10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., S. Tanelli, G. M. Heymsfield, and L. Tian, 2014: The dual wavelength ratio knee: A signature of multiple scattering in airborne Ku–Ka observations. J. Appl. Meteor. Climatol., 53, 17901808, https://doi.org/10.1175/JAMC-D-13-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bech, J., B. Codina, J. Lorente, and D. Bebbington, 2003: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J. Atmos. Oceanic Technol., 20, 845855, https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, and T. Schuur, 2010: Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteor. Climatol., 49, 973990, https://doi.org/10.1175/2009JAMC2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, and M. Xue, 2013: A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. J. Appl. Meteor. Climatol., 52, 169185, https://doi.org/10.1175/JAMC-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Adderio, L. P., F. Porcu, and A. Tokay, 2015: Raindrop size distribution in the presence of break-up. J. Atmos. Sci., 72, 34043416, https://doi.org/10.1175/JAS-D-14-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 10631082, https://doi.org/10.1175/BAMS-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2016: Precipitation rates estimated with GPM’s dual-frequency radar. 2016 IEEE Int. Geoscience and Remote Sensing Symp., Beijing, China, IEEE, 3918, https://doi.org/10.1109/IGARSS.2016.7730017.

    • Crossref
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 81 pp., http://www.eorc.jaxa.jp/GPM/do AU6 c/algorithm/ATBD_DPR_201708_whole_1.pdf.

  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., T. Iguchi, M. Kojima, L. Liao, T. Masaki, H. Hanado, R. M. Meneghini, and R. Oki, 2016: A statistical method for reducing sidelobe clutter for the Ku-band precipitation radar onboard the GPM Core Observatory. J. Atmos. Oceanic Technol., 33, 14131428, https://doi.org/10.1175/JTECH-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and I. Zawadzki, 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 634652, https://doi.org/10.1175/JAM2222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., H. Kim, L. Liao, J. A. Jones, and J. M. Kwiatkowski, 2015: An initial assessment of the surface reference technique applied to data from the Dual-Frequency Precipitation Radar (DPR) on the GPM satellite. J. Atmos. Oceanic Technol., 32, 22812296, https://doi.org/10.1175/JTECH-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM Core Observatory satellite sensors. J. Appl. Meteor. Climatol., 56, 19391957, https://doi.org/10.1175/JAMC-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, X., C. Liu, D. J. Cecil, and Q. Zhang, 2017: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J. Appl. Meteor. Climatol., 56, 26932709, https://doi.org/10.1175/JAMC-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurmi, P., 2003: Recommendations on the verification of local weather forecasts. ECMWF Tech. Memo. 430, 19 pp., https://www.ecmwf.int/en/elibrary/11401-recommendations-verification-local-weather-forecasts.

  • Panegrossi, G., and Coauthors, 2016: Use of the GPM constellation for monitoring heavy precipitation events over the Mediterranean region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 27332753, https://doi.org/10.1109/JSTARS.2016.2520660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petracca, M., L. P. D’Adderio, F. Porcù, G. Vulpiani, S. Sebastianelli, and S. Puca, 2018: Validation of GPM Dual-Frequency Precipitation Radar (DPR) rainfall products over Italy. J. Hydrometeor., 19, 907925, https://doi.org/10.1175/JHM-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Shimozumal, T. Iguchi, and T. Oki, 2016: Spatial and temporal variations of mass-weighted mean diameter estimated by GPM/DPR. IEEE Int. Geoscience and Remote Sensing Symp., Beijing, China, IEEE, 3938–3940, https://doi.org/10.1109/IGARSS.2016.7730023.

    • Crossref
    • Export Citation
  • Speirs, P., M. Gabella, and A. Berne, 2017: A comparison between the GPM Dual-Frequency Precipitation Radar and ground-based radar precipitation rate estimates in the Swiss Alps and Plateau. J. Hydrometeor., 18, 12471269, https://doi.org/10.1175/JHM-D-16-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, https://doi.org/10.1175/WAF1004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, https://doi.org/10.1175/JTECH1767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. Huang, V. Bringi, W. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, https://doi.org/10.1175/JTECH2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2016: A field study of pixel scale variability of raindrop size distribution in the Mid-Atlantic region. J. Hydrometeor., 17, 18551868, https://doi.org/10.1175/JHM-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, F. Porcù, D. B. Wolff, and W. A. Petersen, 2017: A Field study of footprint-scale variability of raindrop size distribution. J. Hydrometeor., 18, 31653179, https://doi.org/10.1175/JHM-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., F. S. Marzano, V. Chandrasekar, A. Berne, and R. Uijlenhoet, 2006: Polarimetric weather radar retrieval of raindrop size distribution by means of a regularized artificial neural network. IEEE Trans. Geosci. Remote Sens., 44, 32623275, https://doi.org/10.1109/TGRS.2006.878438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., S. Giangrande, and F. S. Marzano, 2009: Rainfall estimation from polarimetric S-band radar measurements: Validation of a neural network approach. J. Appl. Meteor. Climatol., 48, 20222036, https://doi.org/10.1175/2009JAMC2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. Delli Passeri, A. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., L. Baldini, and N. Roberto, 2015: Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar. Atmos. Meas. Tech., 8, 46814698, https://doi.org/10.5194/amt-8-4681-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 497 178 11
PDF Downloads 379 114 9

Comparison of GPM Core Observatory and Ground-Based Radar Retrieval of Mass-Weighted Mean Raindrop Diameter at Midlatitude

Leo Pio D’AdderioDepartment of Physics and Earth Science, University of Ferrara, Ferrara, and Institute of Atmospheric Sciences and Climate, National Research Council, Rome, Italy

Search for other papers by Leo Pio D’Adderio in
Current site
Google Scholar
PubMed
Close
,
Gianfranco VulpianiDepartment of Civil Protection, Presidency of the Council of Ministers, Rome, Italy

Search for other papers by Gianfranco Vulpiani in
Current site
Google Scholar
PubMed
Close
,
Federico PorcùDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy

Search for other papers by Federico Porcù in
Current site
Google Scholar
PubMed
Close
,
Ali TokayJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ali Tokay in
Current site
Google Scholar
PubMed
Close
, and
Robert MeneghiniNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the main goals of the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission is to retrieve parameters of the raindrop size distribution (DSD) globally. As a standard product of the Dual-Frequency Precipitation Radar (DPR) on board the GPM Core Observatory satellite, the mass-weighted mean diameter Dm and the normalized intercept parameter Nw are estimated in three dimensions at the resolution of the radar. These are two parameters of the three-parameter gamma model DSD adopted by the GPM algorithms. This study investigates the accuracy of the Dm retrieval through a comparative study of C-band ground radars (GRs) and GPM products over Italy. The reliability of the ground reference is tested by using two different approaches to estimate Dm. The results show good agreement between the ground-based and spaceborne-derived Dm, with an absolute bias being generally lower than 0.5 mm over land in stratiform precipitation for the DPR algorithm and the combined DPR–GMI algorithm. For the DPR–GMI algorithm, the good agreement extends to convective precipitation as well. Estimates of Dm from the DPR high-sensitivity (HS) Ka-band data show slightly worse results. A sensitivity study indicates that the accuracy of the Dm estimation is independent of the height above surface (not shown) and the distance from the ground radar. On the other hand, a nonuniform precipitation pattern (interpreted both as high variability and as a patchy spatial distribution) within the DPR footprint is usually associated with a significant error in the DPR-derived estimate of Dm.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leo Pio D’Adderio, leopio.dadderio@artov.isac.cnr.it

Abstract

One of the main goals of the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission is to retrieve parameters of the raindrop size distribution (DSD) globally. As a standard product of the Dual-Frequency Precipitation Radar (DPR) on board the GPM Core Observatory satellite, the mass-weighted mean diameter Dm and the normalized intercept parameter Nw are estimated in three dimensions at the resolution of the radar. These are two parameters of the three-parameter gamma model DSD adopted by the GPM algorithms. This study investigates the accuracy of the Dm retrieval through a comparative study of C-band ground radars (GRs) and GPM products over Italy. The reliability of the ground reference is tested by using two different approaches to estimate Dm. The results show good agreement between the ground-based and spaceborne-derived Dm, with an absolute bias being generally lower than 0.5 mm over land in stratiform precipitation for the DPR algorithm and the combined DPR–GMI algorithm. For the DPR–GMI algorithm, the good agreement extends to convective precipitation as well. Estimates of Dm from the DPR high-sensitivity (HS) Ka-band data show slightly worse results. A sensitivity study indicates that the accuracy of the Dm estimation is independent of the height above surface (not shown) and the distance from the ground radar. On the other hand, a nonuniform precipitation pattern (interpreted both as high variability and as a patchy spatial distribution) within the DPR footprint is usually associated with a significant error in the DPR-derived estimate of Dm.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leo Pio D’Adderio, leopio.dadderio@artov.isac.cnr.it
Save