• Adam, J. C., A. F. Hamlet, and D. P. Lettenmaier, 2009: Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Processes, 23, 962972, https://doi.org/10.1002/hyp.7201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083, https://doi.org/10.1126/science.1152538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartos, M. D., and M. V. Chester, 2015: Impacts of climate change on electric power supply in the western United States. Nat. Climate Change, 5, 748752, https://doi.org/10.1038/nclimate2648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., T. Bohn, K. C. Solander, N. G. McDowell, C. Xu, E. R. Vivoni, and R. S. Middleton, 2018: Climate change and climate-driven disturbances in the San Juan River sub-basin of the Colorado River. Hydrol. Earth Syst. Sci., 22, 709725, https://doi.org/10.5194/hess-22-709-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, and M. Hrachowitz, 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, https://doi.org/10.1038/nclimate2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryant, A. C., T. H. Painter, J. S. Deems, and S. M. Bender, 2013: Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin. Geophys. Res. Lett., 40, 39453949, https://doi.org/10.1002/grl.50773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., L. G. Riddle, and E. Aguado, 1993: The influence of precipitation and temperature on seasonal streamflow in California. Water Resour. Res., 29, 11271140, https://doi.org/10.1029/92WR02802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clow, D. W., 2010: Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Climate, 23, 22932306, https://doi.org/10.1175/2009JCLI2951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, T., D. W. Pierce, D. R. Cayan, J. A. Vano, and D. P. Lettenmaier, 2011: The importance of warm season warming to western U.S. streamflow changes. Geophys. Res. Lett., 38, L23403, https://doi.org/10.1029/2011GL049660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, T., and L. B. Leopold, 1978: Water in Environmental Planning. W. H. Freeman, 818 pp.

  • Falcone, J. A., D. M. Carlisle, D. M. Wolock, and M. R. Meador, 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology, 91, 621, https://doi.org/10.1890/09-0889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States. J. Geophys. Res., 112, D15109, https://doi.org/10.1029/2007JD008397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., I. T. Stewart, and E. P. Maurer, 2013: Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin. PLOS ONE, 8, e71297, https://doi.org/10.1371/journal.pone.0071297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, L. M., and Coauthors, 2016: Energy budget increases reduce mean streamflow more than snow-rain transitions: Using integrated modeling to isolate impacts on Rocky Mountain hydrology. Environ. Res. Lett., 11, 044015, https://doi.org/10.1088/1748-9326/11/4/044015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritze, H., I. T. Stewart, and E. Pebesma, 2011: Shifts in western North American snowmelt runoff regimes for the recent warm decades. J. Hydrometeor., 12, 9891006, https://doi.org/10.1175/2011JHM1360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., R. M. Vogel, C. N. Kroll, N. L. Poff, and J. D. Olden, 2009: Development of representative indicators of hydrologic alteration. J. Hydrol., 374, 136147, https://doi.org/10.1016/j.jhydrol.2009.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82, 219246, https://doi.org/10.1175/1520-0477(2001)082<0219:HPAHSI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clary, and D. P. Lettenmaier, 2005: Temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561, https://doi.org/10.1175/JCLI3538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2007: Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. J. Climate, 20, 14681486, https://doi.org/10.1175/JCLI4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrmann, S. M., K. Didan, A. Barreto-Munoz, and M. Crimmins, 2016: Divergent responses of vegetation productivity in Southwestern US ecosystems to dry and wet years at different elevations. Environ. Res. Lett., 11, 124005, https://doi.org/10.1088/1748-9326/11/12/124005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., and Coauthors, 2009: Detection and attribution of streamflow timing changes to climate change in the western United States. J. Climate, 22, 38383855, https://doi.org/10.1175/2009JCLI2470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., R. W. Dudley, and L. F. Schalk, 2012: Relations between winter climatic variables and April streamflows in New England and implications for summer streamflows. USGS Scientific Investigations Rep. 2012–5092, 19 pp., https://pubs.usgs.gov/sir/2012/5092/pdf/sir2012-5092_report_508.pdf.

  • Kampf, S. K., and M. A. Lefsky, 2016: Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods. Water Resour. Res., 52, 407422, https://doi.org/10.1002/2015WR017784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2012: Causes of recent changes in western North American snowpack. Climate Dyn., 38, 18851899, https://doi.org/10.1007/s00382-011-1089-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klos, P. Z., T. E. Link, and J. T. Abatzoglou, 2014: Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophys. Res. Lett., 41, 45604568, https://doi.org/10.1002/2014GL060500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, https://doi.org/10.1175/JCLI3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, M., R. Wang, and T. E. Link, 2012: Effects of more extreme precipitation regimes on maximum seasonal snow water equivalent. Geophys. Res. Lett., 39, L20504, https://doi.org/10.1029/2012GL052972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. Pappenberger, 2017a: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett., 44, 12 20812 217, https://doi.org/10.1002/2017GL076043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., E. R. Wahl, A. W. Wood, D. B. Blatchford, and D. Llewellyn, 2017b: Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett., 44, 41244133, https://doi.org/10.1002/2017GL073253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., V. Lopez-Burgos, and Z. Holden, 2014: Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models. Water Resour. Res., 50, 94479462, https://doi.org/10.1002/2013WR014844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., 2010: Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA, 107, 21 25621 262, https://doi.org/10.1073/pnas.0909651107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., and N. S. Diffenbaugh, 2015: Influence of temperature and precipitation variability on near-term snow trends. Climate Dyn., 45, 10991116, https://doi.org/10.1007/s00382-014-2357-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. P. Clark, 2005: Trends and variability in snowmelt runoff in the western United States. J. Hydrometeor., 6, 476482, https://doi.org/10.1175/JHM428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and L. E. Hay, 2007: Rain-on-snow events in the western United States. Bull. Amer. Meteor. Soc., 88, 319328, https://doi.org/10.1175/BAMS-88-3-319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., D. M. Wolock, G. T. Pederson, C. A. Woodhouse, and S. McAfee, 2017: Evidence that recent warming is reducing upper Colorado River flows. Earth Interact., 21, https://doi.org/10.1175/EI-D-17-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W. P., and T. C. Piechota, 2008: Regional analysis of trend and step changes observed in hydroclimatic variables around the Colorado River Basin. J. Hydrometeor., 9, 10201034, https://doi.org/10.1175/2008JHM988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morán-Tejeda, E., J. I. López-Moreno, and M. Beniston, 2013: The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude. Geophys. Res. Lett., 40, 21312136, https://doi.org/10.1002/grl.50463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in Western North America. J. Climate, 19, 62096220, https://doi.org/10.1175/JCLI3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., M. P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, 2017: Slower snowmelt in a warmer world. Nat. Climate Change, 7, 214219, https://doi.org/10.1038/nclimate3225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, C., C. Reidy, M. Dynesius, and C. Revenga, 2005: Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405408, https://doi.org/10.1126/science.1107887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowak, K., M. Hoerling, B. Rajagopalan, and E. Zagona, 2012: Colorado River Basin hydroclimatic variability. J. Climate, 25, 43894403, https://doi.org/10.1175/JCLI-D-11-00406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall, 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA, 107, 17 12517 130, https://doi.org/10.1073/pnas.0913139107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., and Coauthors, 2016: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ., 184, 139152, https://doi.org/10.1016/j.rse.2016.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., S. M. Skiles, J. S. Deems, W. T. Brandt, and J. Dozier, 2018: Variation in rising limb of Colorado River snowmelt runoff hydrograph controlled by dust radiative forcing in snow. Geophys. Res. Lett., 45, 797808, https://doi.org/10.1002/2017GL075826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., J. L. Betancourt, and G. J. McCabe, 2013: Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S. Geophys. Res. Lett., 40, 18111816, https://doi.org/10.1002/grl.50424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., B. Rajagopalan, M. Clark, and J. Pitlick, 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384, https://doi.org/10.1175/JCLI-3272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rittger, K., E. H. Bair, A. Kahl, and J. Dozier, 2016: Spatial estimates of snow water equivalent from reconstruction. Adv. Water Resour., 94, 345363, https://doi.org/10.1016/j.advwatres.2016.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabo, J. L., and Coauthors, 2010: Reclaiming freshwater sustainability in the Cadillac Desert. Proc. Natl. Acad. Sci. USA, 107, 21 26321 270, https://doi.org/10.1073/pnas.1009734108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scalzitti, J., C. Strong, and A. Kochanski, 2016: Climate change impact on the roles of temperature and precipitation in western U.S. snowpack variability. Geophys. Res. Lett., 43, 53615369, https://doi.org/10.1002/2016GL068798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S. M. K., T. H. Painter, J. Belnap, L. Holland, R. L. Reynolds, H. L. Goldstein, and J. Lin, 2015: Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin. Hydrol. Processes, 29, 53975413, https://doi.org/10.1002/hyp.10569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solander, K. C., J. T. Reager, Y. Wada, J. S. Famiglietti, and R. S. Middleton, 2017a: GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Sci. Rep., 7, 8723, https://doi.org/10.1038/s41598-017-07450-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solander, K. C., K. E. Bennett, and R. S. Middleton, 2017b: Shifts in historical streamflow extremes in the Colorado River Basin. J. Hydrol: Reg. Stud., 12, 363377, https://doi.org/10.1016/j.ejrh.2017.05.004.

    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., J. R. Melton, and W. J. Merryfield, 2015: Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophys. Res. Lett., 42, 44294438, https://doi.org/10.1002/2015GL063898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook, 2017. Daymet: Daily Surface Weather data on a 1-km grid for North America, version 3. ORNL DAAC, accessed 1 September 2017, https://doi.org/10.3334/ORNLDAAC/1328.

    • Crossref
    • Export Citation
  • Tsonis, A. A., K. L. Swanson, and P. J. Roebber, 2006: What do networks have to do with climate? Bull. Amer. Meteor. Soc., 87, 585595, https://doi.org/10.1175/BAMS-87-5-585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Udall, B., and J. Overpeck, 2017: The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res., 53, 24042418, https://doi.org/10.1002/2016WR019638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., and Coauthors, 2014: Understanding uncertainties in future Colorado Streamflow. Bull. Amer. Meteor. Soc., 95, 5978, https://doi.org/10.1175/BAMS-D-12-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., B. Nijssen, and D. P. Lettenmaier, 2015: Seasonal hydrologic responses to climate change. Water Resour. Res., 51, 19591976, https://doi.org/10.1002/2014WR015909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witze, A., 2014: Water returns to arid Colorado River delta: US-Mexico agreement paves the way for a rare environmental test. Nature, 507, 286287, https://doi.org/10.1038/507286a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., G. T. Pederson, K. Morino, S. A. McAfee, and G. J. McCabe, 2016: Increasing influence of air temperature on upper Colorado River streamflow. Geophys. Res. Lett., 43, 21742181, https://doi.org/10.1002/2015GL067613.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 465 153 25
PDF Downloads 379 114 15

Interactions between Climate Change and Complex Topography Drive Observed Streamflow Changes in the Colorado River Basin

Kurt C. SolanderLos Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Kurt C. Solander in
Current site
Google Scholar
PubMed
Close
,
Katrina E. BennettLos Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Katrina E. Bennett in
Current site
Google Scholar
PubMed
Close
,
Sean W. FlemingWhite Rabbit R&D LLC, and Oregon State University, Corvallis, Oregon, and University of British Columbia, Vancouver, British Columbia, Canada, and Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Sean W. Fleming in
Current site
Google Scholar
PubMed
Close
,
David S. GutzlerDepartment of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico

Search for other papers by David S. Gutzler in
Current site
Google Scholar
PubMed
Close
,
Emily M. HopkinsLos Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Emily M. Hopkins in
Current site
Google Scholar
PubMed
Close
, and
Richard S. MiddletonLos Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Richard S. Middleton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Colorado River basin (CRB) is one of the most important watersheds for energy, water, and food security in the United States. CRB water supports 15% of U.S. food production, more than 50 GW of electricity capacity, and one of the fastest growing populations in the United States. Energy–water–food nexus impacts from climate change are projected to increase in the CRB. These include a higher incidence of extreme events, widespread snow-to-rain regime shifts, and a higher frequency and magnitude of climate-driven disturbances. Here, we empirically show how the historical annual streamflow maximum and hydrograph centroid timing relate to temperature, precipitation, and snow. In addition, we show how these hydroclimatic relationships vary with elevation and how the elevation dependence has changed over this historical observational record. We find temperature and precipitation have a relatively weak relation (|r| < 0.3) to interannual variations in streamflow timing and extremes at low elevations (<1500 m), but a relatively strong relation (|r| > 0.5) at high elevations (>2300 m) where more snow occurs in the CRB. The threshold elevation where this relationship is strongest (|r| > 0.5) is moving uphill at a rate of up to 4.8 m yr−1 (p = 0.11) and 6.1 m yr−1 (p = 0.01) for temperature and precipitation, respectively. Based on these findings, we hypothesize where warming and precipitation-related streamflow changes are likely to be most severe using a watershed-scale vulnerability map to prioritize areas for further research and to inform energy, water, and food resource management in the CRB.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0012.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kurt C. Solander, ksolander@lanl.gov

Abstract

The Colorado River basin (CRB) is one of the most important watersheds for energy, water, and food security in the United States. CRB water supports 15% of U.S. food production, more than 50 GW of electricity capacity, and one of the fastest growing populations in the United States. Energy–water–food nexus impacts from climate change are projected to increase in the CRB. These include a higher incidence of extreme events, widespread snow-to-rain regime shifts, and a higher frequency and magnitude of climate-driven disturbances. Here, we empirically show how the historical annual streamflow maximum and hydrograph centroid timing relate to temperature, precipitation, and snow. In addition, we show how these hydroclimatic relationships vary with elevation and how the elevation dependence has changed over this historical observational record. We find temperature and precipitation have a relatively weak relation (|r| < 0.3) to interannual variations in streamflow timing and extremes at low elevations (<1500 m), but a relatively strong relation (|r| > 0.5) at high elevations (>2300 m) where more snow occurs in the CRB. The threshold elevation where this relationship is strongest (|r| > 0.5) is moving uphill at a rate of up to 4.8 m yr−1 (p = 0.11) and 6.1 m yr−1 (p = 0.01) for temperature and precipitation, respectively. Based on these findings, we hypothesize where warming and precipitation-related streamflow changes are likely to be most severe using a watershed-scale vulnerability map to prioritize areas for further research and to inform energy, water, and food resource management in the CRB.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0012.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kurt C. Solander, ksolander@lanl.gov

Supplementary Materials

    • Supplemental Materials (PDF 168.23 KB)
Save