• Bellier, J., G. Bontron, and I. Zin, 2017a: Using meteorological analogues for reordering postprocessed precipitation ensembles in hydrological forecasting. Water Resour. Res., 53, 10 08510 107, https://doi.org/10.1002/2017WR021245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellier, J., I. Zin, and G. Bontron, 2017b: Sample stratification in verification of ensemble forecasts of continuous scalar variables: Potential benefits and pitfalls. Mon. Wea. Rev., 145, 35293544, https://doi.org/10.1175/MWR-D-16-0487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellier, J., I. Zin, and G. Bontron, 2018: Generating coherent ensemble forecasts after hydrological postprocessing: Adaptations of ECC-based methods. Water Resour. Res., 54, 57415762, https://doi.org/10.1029/2018WR022601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Bouallègue, Z., 2013: Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Wea. Forecasting, 28, 515524, https://doi.org/10.1175/WAF-D-12-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrocal, V. J., A. E. Raftery, and T. Gneiting, 2008: Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann. Appl. Stat., 2, 11701193, https://doi.org/10.1214/08-AOAS203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 10591072, https://doi.org/10.1175/2010BAMS2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., 2012: Evaluating raw ensembles with the continuous ranked probability score. Quart. J. Roy. Meteor. Soc., 138, 16111617, https://doi.org/10.1002/qj.1891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 11901208, https://doi.org/10.1137/0916069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901, https://doi.org/10.1175/2009MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, S. R. A., N. M. Roberts, R. S. Plant, and S. Migliorini, 2016: A new method for the characterization and verification of local spatial predictability for convective-scale ensembles. Quart. J. Roy. Meteor. Soc., 142, 19821996, https://doi.org/10.1002/qj.2792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flowerdew, J., 2014: Calibrating ensemble reliability whilst preserving spatial structure. Tellus, 66A, 22662, https://doi.org/10.3402/tellusa.v66.22662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., L. I. Stanberry, E. P. Grimit, L. Held, and N. A. Johnson, 2008: Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). TEST, 17, 211264, https://doi.org/10.1007/s11749-008-0114-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and M. Scheuerer, 2018: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-18-0147.1, in press.

    • Crossref
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, https://doi.org/10.1175/2007MWR2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast data set. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, https://doi.org/10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Wea. Rev., 146, 15711600, https://doi.org/10.1175/MWR-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herr, H. D., and R. Krzysztofowicz, 2005: Generic probability distribution of rainfall in space: The bivariate model. J. Hydrol., 306, 234263, https://doi.org/10.1016/j.jhydrol.2004.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of Stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, https://doi.org/10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, and T. Gneiting, 2011: Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Amer. Stat. Assoc., 106, 12911303, https://doi.org/10.1198/jasa.2011.ap10433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerch, S., T. L. Thorarinsdottir, F. Ravazzolo, and T. Gneiting, 2017: Forecaster’s dilemma: Extreme events and forecast evaluation. Stat. Sci., 32, 106127, https://doi.org/10.1214/16-STS588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y.-Y., R. Buizza, and M. Leutbecher, 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134, 20292050, https://doi.org/10.1002/qj.334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2017: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Roberts, N., and H. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, D. E., D. L. Shresta, and Q. J. Wang, 2013: Postprocessing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci., 17, 35873603, https://doi.org/10.5194/hess-17-3587-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874888, https://doi.org/10.1175/MWR-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J., and Coauthors, 2007: Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrol. Earth Syst. Sci. Discuss., 4, 655717, https://doi.org/10.5194/hessd-4-655-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., 2016: A similarity-based implementation of the Schaake shuffle. Mon. Wea. Rev., 144, 19091921, https://doi.org/10.1175/MWR-D-15-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, https://doi.org/10.1214/13-STS443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 10861096, https://doi.org/10.1002/qj.2183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical post-processing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., T. M. Hamill, B. Whitin, M. He, and A. Henkel, 2017: A method for preferential selection of dates in the Schaake shuffle approach to constructing spatio-temporal forecast fields of temperature and precipitation. Water Resour. Res., 53, 30293046, https://doi.org/10.1002/2016WR020133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegert, S., J. Bröcker, and H. Kantz, 2012: Rank histograms of stratified Monte Carlo ensembles. Mon. Wea. Rev., 140, 15581571, https://doi.org/10.1175/MWR-D-11-00302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, https://doi.org/10.1175/MWR3441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R., N. Umlauf, J. W. Messner, G. Mayr, and A. Zeileis, 2017: Ensemble post-processing of daily precipitation sums over complex terrain using censored, high-resolution standardized anomalies. Mon. Wea. Rev., 145, 955969, https://doi.org/10.1175/MWR-D-16-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., M. Scheuerer, and C. Heinz, 2016: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. J. Comput. Graph. Stat., 25, 105122, https://doi.org/10.1080/10618600.2014.977447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whan, K., and M. Schmeits, 2018: Comparing area-probability forecasts of (extreme) local precipitation using parametric and machine learning statistical post-processing methods. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-17-0290.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, https://doi.org/10.1002/met.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2015: Multivariate ensemble Model Output Statistics using empirical copulas. Quart. J. Roy. Meteor. Soc., 141, 945952, https://doi.org/10.1002/qj.2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., D.-J. Seo, J. Demargne, J. Brown, S. Cong, and J. Schaake, 2011: Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction. J. Hydrol., 399, 281298, https://doi.org/10.1016/j.jhydrol.2011.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Y. Zhang, T. Adams, H. Lee, Y. Liu, and J. Schaake, 2018: Comparative evaluation of three Schaake shuffle schemes in postprocessing GEFS precipitation ensemble forecasts. J. Hydrometeor., 19, 575598, https://doi.org/10.1175/JHM-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., L. Wu, M. Scheuerer, J. Schaake, and C. Kongoli, 2017: Comparison of probabilistic quantitative precipitation forecasts from two postprocessing mechanisms. J. Hydrometeor., 18, 28732891, https://doi.org/10.1175/JHM-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 583 216 22
PDF Downloads 551 186 17

Generating Calibrated Ensembles of Physically Realistic, High-Resolution Precipitation Forecast Fields Based on GEFS Model Output

Michael ScheuererCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael Scheuerer in
Current site
Google Scholar
PubMed
Close
and
Thomas M. HamillPhysical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Enhancements of multivariate postprocessing approaches are presented that generate statistically calibrated ensembles of high-resolution precipitation forecast fields with physically realistic spatial and temporal structures based on precipitation forecasts from the Global Ensemble Forecast System (GEFS). Calibrated marginal distributions are obtained with a heteroscedastic regression approach using censored, shifted gamma distributions. To generate spatiotemporal forecast fields, a new variant of the recently proposed minimum divergence Schaake shuffle technique, which selects a set of historic dates in such a way that the associated analysis fields have marginal distributions that resemble the calibrated forecast distributions, is proposed. This variant performs univariate postprocessing at the forecast grid scale and disaggregates these coarse-scale precipitation amounts to the analysis grid by deriving a multiplicative adjustment function and using it to modify the historic analysis fields such that they match the calibrated coarse-scale precipitation forecasts. In addition, an extension of the ensemble copula coupling (ECC) technique is proposed. A mapping function is constructed that maps each raw ensemble forecast field to a high-resolution forecast field such that the resulting downscaled ensemble has the prescribed marginal distributions. A case study over an area that covers the Russian River watershed in California is presented, which shows that the forecast fields generated by the two new techniques have a physically realistic spatial structure. Quantitative verification shows that they also represent the distribution of subgrid-scale precipitation amounts better than the forecast fields generated by the standard Schaake shuffle or the ECC-Q reordering approaches.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0067.s1.

Corresponding author: Michael Scheuerer, michael.scheuerer@noaa.gov

Abstract

Enhancements of multivariate postprocessing approaches are presented that generate statistically calibrated ensembles of high-resolution precipitation forecast fields with physically realistic spatial and temporal structures based on precipitation forecasts from the Global Ensemble Forecast System (GEFS). Calibrated marginal distributions are obtained with a heteroscedastic regression approach using censored, shifted gamma distributions. To generate spatiotemporal forecast fields, a new variant of the recently proposed minimum divergence Schaake shuffle technique, which selects a set of historic dates in such a way that the associated analysis fields have marginal distributions that resemble the calibrated forecast distributions, is proposed. This variant performs univariate postprocessing at the forecast grid scale and disaggregates these coarse-scale precipitation amounts to the analysis grid by deriving a multiplicative adjustment function and using it to modify the historic analysis fields such that they match the calibrated coarse-scale precipitation forecasts. In addition, an extension of the ensemble copula coupling (ECC) technique is proposed. A mapping function is constructed that maps each raw ensemble forecast field to a high-resolution forecast field such that the resulting downscaled ensemble has the prescribed marginal distributions. A case study over an area that covers the Russian River watershed in California is presented, which shows that the forecast fields generated by the two new techniques have a physically realistic spatial structure. Quantitative verification shows that they also represent the distribution of subgrid-scale precipitation amounts better than the forecast fields generated by the standard Schaake shuffle or the ECC-Q reordering approaches.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0067.s1.

Corresponding author: Michael Scheuerer, michael.scheuerer@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 43.02 MB)
Save