New Statistical Methods for Precipitation Bias Correction Applied to WRF Model Simulations in the Antisana Region, Ecuador

María Belén Heredia University Grenoble Alpes, Irstea, ETNA, Grenoble, France

Search for other papers by María Belén Heredia in
Current site
Google Scholar
PubMed
Close
,
Clémentine Junquas University Grenoble Alpes, IRD, CNRS, Grenoble-INP, Institut des Géosciences de l’Environnement (UMR 5001), Grenoble, France

Search for other papers by Clémentine Junquas in
Current site
Google Scholar
PubMed
Close
,
Clémentine Prieur University Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France

Search for other papers by Clémentine Prieur in
Current site
Google Scholar
PubMed
Close
, and
Thomas Condom University Grenoble Alpes, IRD, CNRS, Grenoble-INP, Institut des Géosciences de l’Environnement (UMR 5001), Grenoble, France

Search for other papers by Thomas Condom in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Ecuadorian Andes are characterized by a complex spatiotemporal variability of precipitation. Global circulation models do not have sufficient horizontal resolution to realistically simulate the complex Andean climate and in situ meteorological data are sparse; thus, a high-resolution gridded precipitation product is needed for hydrological purposes. The region of interest is situated in the center of Ecuador and covers three climatic influences: the Amazon basin, the Andes, and the Pacific coast. Therefore, regional climate models are essential tools to simulate the local climate with high spatiotemporal resolution; this study is based on simulations from the Weather Research and Forecasting (WRF) Model. The WRF Model is able to reproduce a realistic precipitation variability in terms of the diurnal cycle and seasonal cycle compared to observations and satellite products; however, it generated some nonnegligible bias in the region of interest. We propose two new methods for precipitation bias correction of the WRF precipitation simulations based on in situ observations. One method consists of modeling the precipitation bias with a Gaussian process metamodel. The other method is a spatial adaptation of the cumulative distribution function transform approach, called CDF-t, based on Voronoï diagrams. The methods are compared in terms of precipitation occurrence and intensity criteria using a cross-validation leave-one-out framework. In terms of both criteria, the Gaussian process metamodel approach yields better results. However, in the upper parts of the Andes (>2000 m), the spatial CDF-t method seems to better preserve the spatial WRF physical patterns.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: María Belén Heredia, maria-belen.heredia@irstea.fr

Abstract

The Ecuadorian Andes are characterized by a complex spatiotemporal variability of precipitation. Global circulation models do not have sufficient horizontal resolution to realistically simulate the complex Andean climate and in situ meteorological data are sparse; thus, a high-resolution gridded precipitation product is needed for hydrological purposes. The region of interest is situated in the center of Ecuador and covers three climatic influences: the Amazon basin, the Andes, and the Pacific coast. Therefore, regional climate models are essential tools to simulate the local climate with high spatiotemporal resolution; this study is based on simulations from the Weather Research and Forecasting (WRF) Model. The WRF Model is able to reproduce a realistic precipitation variability in terms of the diurnal cycle and seasonal cycle compared to observations and satellite products; however, it generated some nonnegligible bias in the region of interest. We propose two new methods for precipitation bias correction of the WRF precipitation simulations based on in situ observations. One method consists of modeling the precipitation bias with a Gaussian process metamodel. The other method is a spatial adaptation of the cumulative distribution function transform approach, called CDF-t, based on Voronoï diagrams. The methods are compared in terms of precipitation occurrence and intensity criteria using a cross-validation leave-one-out framework. In terms of both criteria, the Gaussian process metamodel approach yields better results. However, in the upper parts of the Andes (>2000 m), the spatial CDF-t method seems to better preserve the spatial WRF physical patterns.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: María Belén Heredia, maria-belen.heredia@irstea.fr
Save
  • Antoniadis, A., C. Helbert, C. Prieur, and L. Viry, 2012: Spatio-temporal metamodeling for West African monsoon. Environmetrics, 23, 2436, https://doi.org/10.1002/env.1134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, L., S. Chunxiang, L. Li, Y. Yang, and J. Wu, 2018: Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sens., 10, 362, https://doi.org/10.3390/rs10030362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basantes-Serrano, R., 2015: Evolution of glaciers in the Ecuadorian Andes since the 1950s and its contribution to the study of the climate change in the inner tropics. Ph.D. thesis, Université Grenoble Alpes, 197 pp., https://tel.archives-ouvertes.fr/tel-01219778.

  • Bendix, J., and W. Lauer, 1992: Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische interpretation. Erdkunde, 46, 118134, https://doi.org/10.3112/erdkunde.1992.02.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buytaert, W., R. Celleri, P. Willems, B. D. Bièvre, and G. Wyseure, 2006: Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol., 329, 413421, https://doi.org/10.1016/j.jhydrol.2006.02.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buytaert, W., S. Moulds, L. Acosta, B. D. Bièvre, C. Olmos, M. Villacis, C. Tovar, and K. M. J. Verbist, 2017: Glacial melt content of water use in the tropical Andes. Environ. Res. Lett., 12, 114014, https://doi.org/10.1088/1748-9326/aa926c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2018: Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dyn., 50, 3149, https://doi.org/10.1007/s00382-017-3580-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, P., B. Pouyaud, W. Suarez, and T. Condom, 2011: Climate change threats to environment in the tropical Andes: Glaciers and water resources. Reg. Environ. Change, 11 (Suppl.), 179187, https://doi.org/10.1007/s10113-010-0177-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Hazards Group, 1981: CHIRPS satellite product. University of California, Santa Barbara, accessed 27 May 2017, http://chg.geog.ucsb.edu/data/chirps/.

  • Colette, A., R. Vautard, and M. Vrac, 2012: Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys. Res. Lett., 39, L13707, https://doi.org/10.1029/2012GL052258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626, https://doi.org/10.1016/j.gloplacha.2006.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., and Coauthors, 2005: Diurnal circulation of the Bolivian Altiplano. Part I: Observations. Mon. Wea. Rev., 133, 911924, https://doi.org/10.1175/MWR2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., J. Ronchail, J. L. Guyot, G. Cochonneau, F. Naziano, W. Lavado, and P. Vauchel, 2009: Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol., 29, 15741594, https://doi.org/10.1002/joc.1791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., J. Ronchail, J. L. Guyot, C. Junquas, P. Vauchel, W. Lavado, G. Drapeau, and R. Pombosa, 2011: Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): Understanding the exceptional 2010 drought. Geophys. Res. Lett., 38, L13406, https://doi.org/10.1029/2011GL047862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., S. Chavez, J. Ronchail, C. Junquas, K. Takahashi, and W. Lavado, 2015: Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour. Res., 51, 34593475, https://doi.org/10.1002/2014WR016273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

  • Favier, V., P. Wagnon, J. P. Chazarin, L. Maisincho, and A. Coudrain, 2004: One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. J. Geophys. Res., 109, D18105, https://doi.org/10.1029/2003JD004359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forland, E., and Coauthors, 1996: Manual for operational correction of Nordic precipitation data. Oslo Norwegian Meteorological Institute Rep. 24/96, 66 pp.

  • Francou, B., M. Vuille, V. Favier, and B. Cáceres, 2004: New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J. Geophys. Res., 109, D18106, https://doi.org/10.1029/2003JD004484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gräler, B., M. Rehr, L. Gerharz, and E. Pebesma, 2012: Spatio-temporal analysis and interpolation of PM10 measurements in Europe for 2009. ETC/ACM Tech. Paper 2011/10, 8, 37 pp., https://acm.eionet.europa.eu/reports/ETCACM_TP_2011_10_spatio-temp_AQinterpolation.

  • Gräler, B., E. Pebesma, and G. Heuvelink, 2016: Spatio-temporal interpolation using gstat. R J., 8, 204218, https://journal.r-project.org/archive/2016-1/na-pebesma-heuvelink.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M., and Coauthors, 2012: Los peligros volcánicos asociados con el Antisana. Serie Los Peligros Volcánicos en Ecuador, Vol. 4, Corporación Editora Nacional IG-EPN IRD, 280 pp.

  • Hanchoowong, R., U. Weesakul, and S. Chumchean, 2012: Bias correction of radar rainfall estimates based on a geostatistical technique. Sci. Asia, 38, 373385, https://doi.org/10.2306/scienceasia1513-1874.2012.38.373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herold, N., A. Behrangi, and L. V. Alexander, 2017: Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res. Atmos., 122, 668681, https://doi.org/10.1002/2016JD025842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, https://doi.org/10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junquas, C., K. Takahashi, T. Condom, J.-C. Espinoza, S. Chavez, J.-E. Sicart, and T. Lebel, 2018: Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dyn., 50, 39954017, https://doi.org/10.1007/s00382-017-3858-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M., 1948: Rank Correlation Methods. Griffin, 160 pp.

  • Kwiatkowski, D., P. Phillips, P. Schmidt, and Y. Shin, 1992: Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econom., 54, 159178, https://doi.org/10.1016/0304-4076(92)90104-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laraque, A., J. Ronchail, G. Cochonneau, R. Pombosa, and J. L. Guyot, 2007: Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon basin. J. Hydrometeor., 8, 13641381, https://doi.org/10.1175/2007JHM784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ly, S., C. Charles, and A. Degré, 2011: Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci., 15, 22592274, https://doi.org/10.5194/hess-15-2259-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Manz, B., S. Páez-Bimos, N. Horna, W. Buytaert, B. Ochoa-Tocachi, W. Lavado-Casimiro, and B. Willems, 2017: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes. J. Hydrometeor., 18, 24692489, https://doi.org/10.1175/JHM-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marrel, A., B. Iooss, F. Van Dorpe, and E. Volkova, 2008: An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Stat. Data Anal., 52, 47314744, https://doi.org/10.1016/j.csda.2008.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao, 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China an assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci., 15, 17951817, https://doi.org/10.5194/hess-15-1795-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P. A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourre, L., T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin, 2016: Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci., 20, 125141, https://doi.org/10.5194/hess-20-125-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moya-Álvarez, A. S., D. Martínez-Castro, J. L. Flores, and Y. Silva, 2018: Sensitivity study on the influence of parameterization schemes in WRF_ ARW Model on short- and medium-range precipitation forecasts in the central Andes of Peru. Adv. Meteor., 2018, 1381092, https://doi.org/10.1155/2018/1381092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M. F., and S. E. Thompson, 2013: Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Adv. Water Resour., 60, 121134, https://doi.org/10.1016/j.advwatres.2013.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakley, J., and A. O’Hagan, 2002: Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89, 769784, https://doi.org/10.1093/biomet/89.4.769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa, A., L. Pineda, P. Crespo, and P. Willems, 2014: Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean region of Ecuador and Peru. Hydrol. Earth Syst. Sci., 18, 31793193, https://doi.org/10.5194/hess-18-3179-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa, A., L. Campozano, E. Sánchez, R. Gualán, and E. Samaniego, 2016: Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study. Int. J. Climatol., 36, 12441255, https://doi.org/10.1002/joc.4418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouzeau, G., J.-M. Soubeyroux, M. Schneider, R. Vautard, and S. Planton, 2016: Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Climate Serv., 4, 112, https://doi.org/10.1016/j.cliser.2016.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paccini, L., J. C. Espinoza, J. Ronchail, and H. Segura, 2018: Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: A focus on western Amazon-Andes transition region. Int. J. Climatol., 38, 23862399, https://doi.org/10.1002/joc.5341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., and M. J. Schervish, 2006: Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17, 483506, https://doi.org/10.1002/env.785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paredes-Trejo, F. J., H. Barbosa, and T. Lakshmi Kumar, 2017: Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid Environ., 139, 2640, https://doi.org/10.1016/j.jaridenv.2016.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004: Multivariable geostatistics in S: The gstat package. Comput. Geosci., 30, 683691, https://doi.org/10.1016/j.cageo.2004.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., G. Weedon, M. Best, S. Gomes, P. Viterbo, S. Hagemann, and J. Haerter, 2010: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395, 199215, https://doi.org/10.1016/j.jhydrol.2010.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pouget, J.-C., D. Proano, A. Vera, M. Villacis, T. Condom, M. Escobar, P. Le Goulven, and R. Calvez, 2017: Modélisation glacio-hydrologique et gestion des ressources en eau dans les Andes équatoriennes: L’exemple de Quito. Hydrol. Sci. J., 62, 431446, https://doi.org/10.1080/02626667.2015.1131988.

    • Search Google Scholar
    • Export Citation
  • Rabatel, A., and Coauthors, 2013: Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere, 7, 81102, https://doi.org/10.5194/tc-7-81-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. E., and C. K. I. Williams, 2005: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning Series, MIT Press, 272 pp.

    • Crossref
    • Export Citation
  • R Core Team, 2015: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Rollenbeck, R., and J. Bendix, 2011: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res., 99, 277289, https://doi.org/10.1016/j.atmosres.2010.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossel, F., P. Le Goulven, and E. Cadier, 1999: Repartition spatiale de l’influence de l’ENSO sur les precipitations annuelles en equateur. Rev. Sci. Eau, 12, 183200, https://doi.org/10.7202/705348ar.

    • Search Google Scholar
    • Export Citation
  • Sicart, J., R. Hock, P. Ribstein, M. Litt, and E. Ramirez, 2011: Analysis of seasonal variations in mass balance and meltwater discharge of the Tropical Zongo Glacier by application of a distributed energy balance model. J. Geophys. Res., 116, D13105, https://doi.org/10.1029/2010JD015105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2017: The complex influence of ENSO on droughts in Ecuador. Climate Dyn., 48, 405427, https://doi.org/10.1007/s00382-016-3082-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrac, M., 2015: Statistical downscaling through CDF-transform, version 1.0.1. R package, https://cran.r-project.org/web/packages/CDFt/index.html.

  • Vrac, M., and P. Friederichs, 2015: Multivariate—intervariable, spatial, and temporal—bias correction. J. Climate, 28, 218237, https://doi.org/10.1175/JCLI-D-14-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrac, M., and P. Vaittinada, 2017: Influence of bias correcting predictors on statistical downscaling models. J. Appl. Meteor. Climatol., 56, 526, https://doi.org/10.1175/JAMC-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrac, M., P. Drobinski, A. Merlo, M. Herrmann, C. Lavaysse, L. Li, and S. Somot, 2012: Dynamical and statistical downscaling of the French Mediterranean climate: Uncertainty assessment. Nat. Hazards Earth Syst. Sci., 12, 27692784, https://doi.org/10.5194/nhess-12-2769-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrac, M., T. Noël, and R. Vautard, 2016: Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences matter. J. Geophys. Res. Atmos., 121, 52375258, https://doi.org/10.1002/2015JD024511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Climate, 13, 25202535, https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagnon, P., M. Lafaysse, Y. Lejeune, L. Maisincho, M. Rojas, and J. P. Chazarin, 2009: Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. J. Geophys. Res., 114, D19113, https://doi.org/10.1029/2009JD012292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambrano-Bigiarini, M., A. Nauditt, C. Birkel, K. Verbist, and L. Ribbe, 2017: Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci., 21, 12951320, https://doi.org/10.5194/hess-21-1295-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5860 409 138
PDF Downloads 1050 112 2