A Multiyear Analysis of Global Precipitation Combining CloudSat and GPM Precipitation Retrievals

Lindsey Hayden Department of Physical and Environmental Sciences, Texas A&M University at Corpus Christi, Corpus Christi, Texas

Search for other papers by Lindsey Hayden in
Current site
Google Scholar
PubMed
Close
and
Chuntao Liu Department of Physical and Environmental Sciences, Texas A&M University at Corpus Christi, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Satellite-based instruments are essential to the observation of precipitation at a global scale, especially over remote regions. Each instrument has its own strengths and limitations in accurately determining the rate of precipitation at the surface. By using the complementary strengths of two instruments, a more complete analysis of global precipitation can be performed. The Global Precipitation Measurement (GPM) Core Observatory’s Dual-Frequency Precipitation Radar (DPR) is capable of measuring precipitation at high and medium precipitation rates by using Ku-band (13.6 GHz) radiation. The CloudSat satellite’s Cloud Profiling Radar (CPR) uses higher-frequency W-band (94 GHz) radiation and is therefore capable of measuring precipitation at low rates not detected by the GPM DPR. CloudSat observations from January 2007 to December 2016 and DPR observations from March 2014 to February 2018 are combined and the results examined. Since these datasets are not completely coincident, this study is conducted as a multiyear analysis. Observed precipitation from CloudSat is used starting at the lowest precipitation rates and increasing rates until the occurrence observed by GPM surpasses that of CloudSat, at which point data from GPM are used. The precipitation rate at which this change occurs contains important information on the amount of precipitation missed by each instrument and implications as to the size of the hydrometeors present. Liquid precipitation retrieval from CloudSat is not performed over land; analysis over land is produced here using the information available. By combining the two datasets, a more complete picture of precipitation occurring globally is obtained.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lindsey Hayden, lhayden@islander.tamucc.edu

Abstract

Satellite-based instruments are essential to the observation of precipitation at a global scale, especially over remote regions. Each instrument has its own strengths and limitations in accurately determining the rate of precipitation at the surface. By using the complementary strengths of two instruments, a more complete analysis of global precipitation can be performed. The Global Precipitation Measurement (GPM) Core Observatory’s Dual-Frequency Precipitation Radar (DPR) is capable of measuring precipitation at high and medium precipitation rates by using Ku-band (13.6 GHz) radiation. The CloudSat satellite’s Cloud Profiling Radar (CPR) uses higher-frequency W-band (94 GHz) radiation and is therefore capable of measuring precipitation at low rates not detected by the GPM DPR. CloudSat observations from January 2007 to December 2016 and DPR observations from March 2014 to February 2018 are combined and the results examined. Since these datasets are not completely coincident, this study is conducted as a multiyear analysis. Observed precipitation from CloudSat is used starting at the lowest precipitation rates and increasing rates until the occurrence observed by GPM surpasses that of CloudSat, at which point data from GPM are used. The precipitation rate at which this change occurs contains important information on the amount of precipitation missed by each instrument and implications as to the size of the hydrometeors present. Liquid precipitation retrieval from CloudSat is not performed over land; analysis over land is produced here using the information available. By combining the two datasets, a more complete picture of precipitation occurring globally is obtained.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lindsey Hayden, lhayden@islander.tamucc.edu
Save
  • Adhikari, A., C. Liu, and M. Kulie, 2018: Global distribution of snow precipitation features and their properties from three years of GPM observations. J. Climate, 31, 37313754, https://doi.org/10.1175/JCLI-D-17-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2016: The new version 2.3 of the Global Precipitation Climatology Project (GPCP) monthly analysis project. University of Maryland Rep., 8 pp., http://eagle1.umd.edu/GPCP_ICDR/GPCP_Monthly.html.

  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amiri-Farahani, A., R. J. Allen, D. Neubauer, and U. Lohmann, 2017: Impact of Saharan dust on North Atlantic marine stratocumulus clouds: Importance of the semidirect effect. Atmos. Chem. Phys., 17, 63056322, https://doi.org/10.5194/acp-17-6305-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, https://doi.org/10.1029/2012JD017979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, https://doi.org/10.1175/2009JAMC2330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, P. B. Krummel, and H. Gerber, 1996: Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122, 13071339, https://doi.org/10.1002/qj.49712253405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, and P. B. Krummel, 1998: Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124, 151168, https://doi.org/10.1002/qj.49712454507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., N. B. Wood, and T. S. L’Ecuyer, 2017: A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations. Atmos. Meas. Tech., 10, 25572571, https://doi.org/10.5194/amt-10-2557-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, T. D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, https://doi.org/10.1029/2008GL036728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, 21562202, https://doi.org/10.1029/2008JD009973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, D. Vane, G. Stephens, and D. Reinke, 2013: Level 2-C Precipitation Column Algorithm Product process description and interface control document. JPL Doc., 17 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-PRECIP-COLUMN_PDICD.P2_R04.20130124.pdf.

  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 5867, https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, LI7808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 81 pp., http://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_201708_whole_1.pdf.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornfield, J., A. F. Hasler, K. J. Hanson, and V. E. Suomi, 1967: Photograhic cloud climatology from ESSA III and V computer produced mosaics. Bull. Amer. Meteor. Soc., 48, 878883, https://doi.org/10.1175/1520-0477-48.12.878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2014: Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 7, 39313944, https://doi.org/10.1109/JSTARS.2014.2320960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and L. Milani, 2018: Seasonal variability of shallow cumuliform snowfall: A CloudSat perspective. Quart. J. Roy. Meteor. Soc., 144, 329343, https://doi.org/10.1002/qj.3222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809816, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, https://doi.org/10.1029/2011JD016076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A14, https://doi.org/10.1029/2008JD009835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lietzke, C. E., C. Deser, and T. H. Vonder Harr, 2001: Evolutionary structure of the eastern Pacific double ITCZ based on satellite moisture profile retrievals. J. Climate, 14, 743751, https://doi.org/10.1175/1520-0442(2001)014<0743:ESOTEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 392412, https://doi.org/10.1175/2010JHM1320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and S. Avey, 2017: Seasonal variability of warm boundary layer cloud and precipitation properties in the Southern Ocean as diagnosed form A-Train data. J. Geophys. Res. Atmos., 122, 10151032, https://doi.org/10.1002/2016JD025348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., C. D. Kummerow, and G. Elsaesser, 2012: Relationships between the raindrop size distribution and properties of the environment and clouds inferred from TRMM. J. Climate, 25, 29632978, https://doi.org/10.1175/JCLI-D-11-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement Mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., T. Watanabe, H. Sasaki, T. Kubota, S. Kida, and K. Okamoto, 2008: Validation of western and eastern Pacific rainfall estimates from the TRMM PR using a radiative transfer model. J. Geophys. Res., 113, D15116, https://doi.org/10.1029/2007JD009002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A comparison of precipitation occurrence from the NCEP Stage IV QPE product and the CloudSat Cloud Profiling Radar. J. Hydrometeor., 15, 444458, https://doi.org/10.1175/JHM-D-13-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, D. G. Vane, G. L. Stephens, and P. Partain, 2013a: Level 2C snow profile process description and interface control document. JPL Doc., 21 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf.

  • Wood, N. B., T. S. L’Ecuyer, F. L. Bliven, and G. L. Stephens, 2013b: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech., 6, 36353648, https://doi.org/10.5194/amt-6-3635-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, G. L. Stephens, D. R. Hudak, and P. Rodriguez, 2014: Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos., 119, 89418961, https://doi.org/10.1002/2013JD021303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2004: Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the southern ocean. J. Geophys. Res., 109, D06204, https://doi.org/10.1029/2003JD003864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., J. Redemann, J. Haywood, R. Wood, S. Piketh, M. Hipondoka, and P. Formenti, 2016: Smoke and clouds above the Southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bull. Amer. Meteor. Soc., 97, 11311135, https://doi.org/10.1175/BAMS-D-15-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2314 765 99
PDF Downloads 812 205 14