Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a Dense Urban Site in Shanghai: Sensitivity to Anthropogenic Heat and Irrigation

Xiangyu Ao School of Atmospheric Sciences, Nanjing University, Nanjing, China
Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China
Department of Meteorology, University of Reading, Reading, United Kingdom
Shanghai Key Laboratory of Meteorology and Health, Shanghai, China

Search for other papers by Xiangyu Ao in
Current site
Google Scholar
PubMed
Close
,
C. S. B. Grimmond Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by C. S. B. Grimmond in
Current site
Google Scholar
PubMed
Close
,
H. C. Ward Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by H. C. Ward in
Current site
Google Scholar
PubMed
Close
,
A. M. Gabey Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by A. M. Gabey in
Current site
Google Scholar
PubMed
Close
,
Jianguo Tan Shanghai Climate Centre, Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorology and Health, Shanghai, China

Search for other papers by Jianguo Tan in
Current site
Google Scholar
PubMed
Close
,
Xiu-Qun Yang School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Xiu-Qun Yang in
Current site
Google Scholar
PubMed
Close
,
Dongwei Liu Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorology and Health, Shanghai, China

Search for other papers by Dongwei Liu in
Current site
Google Scholar
PubMed
Close
,
Xing Zhi Department of Science and Technology Development, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Xing Zhi in
Current site
Google Scholar
PubMed
Close
,
Hongya Liu Shanghai Central Meteorological Observatory, Shanghai, China

Search for other papers by Hongya Liu in
Current site
Google Scholar
PubMed
Close
, and
Ning Zhang School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Ning Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Surface Urban Energy and Water Balance Scheme (SUEWS) is used to investigate the impact of anthropogenic heat flux QF and irrigation on surface energy balance partitioning in a central business district of Shanghai. Diurnal profiles of QF are carefully derived based on city-specific hourly electricity consumption data, hourly traffic data, and dynamic population density. The QF is estimated to be largest in summer (mean daily peak 236 W m−2). When QF is omitted, the SUEWS sensible heat flux QH reproduces the observed diurnal pattern generally well, but the magnitude is underestimated compared to observations for all seasons. When QF is included, the QH estimates are improved in spring, summer, and autumn but are poorer in winter, indicating winter QF is overestimated. Inclusion of QF has little influence on the simulated latent heat flux QE but improves the storage heat flux estimates except in winter. Irrigation, both amount and frequency, has a large impact on QE. When irrigation is not considered, the simulated QE is underestimated for all seasons. The mean summer daytime QE is largely overestimated compared to observations under continuous irrigation conditions. Model results are improved when irrigation occurs with a 3-day frequency, especially in summer. Results are consistent with observed monthly outdoor water use. This study highlights the importance of appropriately including QF and irrigation in urban land surface models—terms not generally considered in many previous studies.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ning Zhang, ningzhang@nju.edu.cn; Xiu-Qun Yang, xqyang@nju.edu.cn

Abstract

The Surface Urban Energy and Water Balance Scheme (SUEWS) is used to investigate the impact of anthropogenic heat flux QF and irrigation on surface energy balance partitioning in a central business district of Shanghai. Diurnal profiles of QF are carefully derived based on city-specific hourly electricity consumption data, hourly traffic data, and dynamic population density. The QF is estimated to be largest in summer (mean daily peak 236 W m−2). When QF is omitted, the SUEWS sensible heat flux QH reproduces the observed diurnal pattern generally well, but the magnitude is underestimated compared to observations for all seasons. When QF is included, the QH estimates are improved in spring, summer, and autumn but are poorer in winter, indicating winter QF is overestimated. Inclusion of QF has little influence on the simulated latent heat flux QE but improves the storage heat flux estimates except in winter. Irrigation, both amount and frequency, has a large impact on QE. When irrigation is not considered, the simulated QE is underestimated for all seasons. The mean summer daytime QE is largely overestimated compared to observations under continuous irrigation conditions. Model results are improved when irrigation occurs with a 3-day frequency, especially in summer. Results are consistent with observed monthly outdoor water use. This study highlights the importance of appropriately including QF and irrigation in urban land surface models—terms not generally considered in many previous studies.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ning Zhang, ningzhang@nju.edu.cn; Xiu-Qun Yang, xqyang@nju.edu.cn
Save
  • Alexander, P. J., G. Mills, and R. Fealy, 2015: Using LCZ data to run an urban energy balance model. Urban Climate, 13, 1437, https://doi.org/10.1016/j.uclim.2015.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amato, A. D., M. Ruth, P. Kirshen, and J. Horwitz, 2005: Regional energy demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts. Climatic Change, 71, 175201, https://doi.org/10.1007/s10584-005-5931-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anandakumar, K., 1999: A study on the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ., 33, 39113918, https://doi.org/10.1016/S1352-2310(99)00133-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2016a: Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int. J. Climatol., 36, 46084624, https://doi.org/10.1002/joc.4657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., C. S. B. Grimmond, D. Liu, Z. Han, P. Hu, Y. Wang, X. Zhen, and J. Tan, 2016b: Radiation fluxes in a business district of Shanghai, China. J. Appl. Meteor. Climatol., 55, 24512468, https://doi.org/10.1175/JAMC-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., and C. S. B. Grimmond, 1998: An urban canyon energy budget model and its application to urban storage heat flux modeling. Energy Build., 27, 6168, https://doi.org/10.1016/S0378-7788(97)00026-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asaeda, T., and V. Ca, 1993: The subsurface transport of heat and moisture and its effect on the environment: A numerical model. Bound.-Layer Meteor., 65, 159179, https://doi.org/10.1007/BF00708822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and C. S. B. Grimmond, 2016a: Investigation of the impact of anthropogenic heat flux within an urban land surface model and PILPS-urban. Theor. Appl. Climatol., 126, 5160, https://doi.org/10.1007/s00704-015-1554-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and C. S. B. Grimmond, 2016b: Modelling the partitioning of turbulent fluxes at urban sites with varying vegetation cover. J. Hydrometeor., 17, 25372553, https://doi.org/10.1175/JHM-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y., J. Tan, J. Peng, and W. Gu, 2015: Relativity analysis of daily water supply and meteorology factor and establishment of forecast model in Shanghai (in Chinese). J. Water Resour. Water Eng., 26, 3236, https://doi.org/10.11705/j.issn.1672-643X.2015.01.006.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modeling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., X. Yang, and J. Wu, 2016: Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data. J. Geophys. Res. Atmos., 121, 51935212, https://doi.org/10.1002/2015JD024642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., M. Zhang, and Y. Wang, 2016: Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: A case study of Nanjing, China. Theor. Appl. Climatol., 125, 713728, https://doi.org/10.1007/s00704-015-1535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, W. T., F. Salamanca, M. Georgescu, A. Mahalov, J. M. Milne, and B. L. Ruddell, 2014: A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes. Atmos. Environ., 99, 6476, https://doi.org/10.1016/j.atmosenv.2014.09.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christen, A., and R. Vogt, 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421, https://doi.org/10.1002/joc.1074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CIESIN, 2017: Gridded Population of the World (GPW), v4. Subset used: Population Density, v4.10, NASA SEDAC, accessed 28 November 2018, https://doi.org/10.7927/H4DZ068D.

    • Crossref
    • Export Citation
  • Coutts, A. M., N. J. Tapper, J. Beringer, M. Loughnan, and M. Demuzere, 2013: Watering our cities: The capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr., 37, 228, https://doi.org/10.1177/0309133312461032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuzere, M., A. M. Coutts, M. Göhler, A. M. Broadbent, H. Wouters, N. P. M. van Lipzig, and L. Gebert, 2014: The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model. Urban Climate, 10, 148170, https://doi.org/10.1016/j.uclim.2014.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuzere, M., and Coauthors, 2017: Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Quart. J. Roy. Meteor. Soc., 143, 15811596, https://doi.org/10.1002/qj.3028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, A., and Coauthors, 2016: Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett., 43, 28732879, https://doi.org/10.1002/2016GL067745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doll, D., J. K. S. Ching, and J. Kaneshiro, 1985: Parameterization of subsurface heating for soil and concrete using net radiation data. Bound.-Layer Meteor., 32, 351372, https://doi.org/10.1007/BF00122000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J. M., Y. L. Wang, Z. G. Ma, and Y. H. Liu, 2012: Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J. Climate, 25, 71877203, https://doi.org/10.1175/JCLI-D-11-00333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, M., and A. Hadas, 1972: The heat flux density in a non-homogeneous bare loessial soil. Bound.-Layer Meteor., 3, 191200, https://doi.org/10.1007/BF02033918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabey, A., S. Grimmond, and I. Capel-Timms, 2018: Anthropogenic heat flux: Advisable spatial resolutions when input data are scarce. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-018-2367-y, in press.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 1992: The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. Int. J. Climatol., 12, 481497, https://doi.org/10.1002/joc.3370120506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1986: Urban water-balance: 2. Results from a suburb of Vancouver, British-Columbia. Water Resour. Res., 22, 14041412, https://doi.org/10.1029/WR022i010p01404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1991: An evaporation-interception model for urban areas. Water Resour. Res., 27, 17391755, https://doi.org/10.1029/91WR00557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor. Climatol., 38, 922940, https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H. A. Cleugh, and T. R. Oke, 1991: An objective urban heat storage model and its comparison with other schemes. Atmos. Environ., 25, 311326, https://doi.org/10.1016/0957-1272(91)90003-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, https://doi.org/10.1175/2010JAMC2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the international urban energy balance model comparison. Int. J. Climatol., 31, 244272, https://doi.org/10.1002/joc.2227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, W., X. Wang, J. Sun, A. Ding, and J. Zou, 2016: Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze river valley. Atmos. Chem. Phys., 16, 98759890, https://doi.org/10.5194/acp-16-9875-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallenbeck, M., M. Rice, B. Smith, C. Cornell-Martinez, and J. Wilkinson, 1997: Vehicle volume distribution by classification. Washington State Transportation Center, 54 pp.

  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909, https://doi.org/10.1016/S1352-2310(99)00132-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvi, L., C. S. B. Grimmond, and A. Christen, 2011: The surface urban energy and water balance scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol., 411, 219237, https://doi.org/10.1016/j.jhydrol.2011.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvi, L., C. S. B. Grimmond, M. Taka, A. Nordbo, H. Setälä, and I. B. Strachan, 2014: Development of the Surface Urban Energy and Water balance Scheme (SUEWS) for cold climate cities. Geosci. Model Dev., 7, 16911711, https://doi.org/10.5194/gmd-7-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvi, L., C. S. B. Grimmond, J. P. Mcfadden, A. Christen, I. B. Strachan, M. Taka, L. Warsta, and M. Heimann, 2017: Warming effects on the urban hydrology in cold climate regions. Sci. Rep., 7, 5833, https://doi.org/10.1038/s41598-017-05733-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., X.-Q. Yang, and X. Liu, 2015: Seasonality in anthropogenic aerosol effects on East Asian climate simulated with CAM5. J. Geophys. Res. Atmos., 120, 10 83710 861, https://doi.org/10.1002/2015JD023451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanda, M., A. Inagaki, T. Miyamoto, M. Gryschka, and S. Raasch, 2013: A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteor., 148, 357377, https://doi.org/10.1007/s10546-013-9818-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karsisto, P., C. Fortelius, M. Demuzere, C. S. B. Grimmond, K. W. Oleson, R. Kouznetsov, V. Masson, and L. Järvi, 2016: Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Quart. J. Roy. Meteor. Soc., 142, 401417, https://doi.org/10.1002/qj.2659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, C. W., S. Grimmond, J. Barlow, D. Gatey, S. Kotthaus, F. Lindberg, and C. H. Halios, 2017: Evaluation of urban local-scale aerodynamic parameters: Implications for the vertical profile of wind speed and for source areas. Bound.-Layer Meteor., 164, 183213, https://doi.org/10.1007/s10546-017-0248-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatun, R., and Coauthors, 2011: Spatial variations in evapotranspiration over East Asian forest sites. I. Evapotranspiration and decoupling coefficient. Hydrol. Res. Lett., 5, 8387, https://doi.org/10.3178/hrl.5.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikegawa, Y., A. Tanaka, Y. Ohashi, T. Ihara, and Y. Shigeta, 2014: Observed and simulated sensitivities of summertime urban surface air temperatures to anthropogenic heat in downtown areas of two Japanese major cities, Tokyo and Osaka. Theor. Appl. Climatol., 117, 175193, https://doi.org/10.1007/s00704-013-0996-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kljun, N. P., P. Calanca, M. V. Rotach, and H. P. Schmid, 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503523, https://doi.org/10.1023/B:BOUN.0000030653.71031.96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokkonen, T. V., C. S. B. Grimmond, O. Räty, H. C. Ward, A. Christen, T. R. Oke, S. Kotthaus, and L. Järvi, 2018: Sensitivity of Surface Urban Energy and Water Balance Scheme (SUEWS) to downscaling of reanalysis forcing data. Urban Climate, 23, 3652, https://doi.org/10.1016/j.uclim.2017.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotthaus, S., and C. S. B. Grimmond, 2014: Energy exchange in a dense urban environment – Part I: Temporal variability of long-term observations in central London. Urban Climate, 10, 261280, https://doi.org/10.1016/j.uclim.2013.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyle’s Converter, 2017: Convert tons of coal equivalent to kilowatt-hours. Kyle’s Converter, accessed 1 December 2017, http://www.kylesconverter.com/energy,-work,-and-heat/tons-of-coal-equivalent-to-kilowatt--hours.

  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindberg, F., C. S. B. Grimmond, N. Yogeswaran, S. Kotthaus, and L. Allen, 2013: Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015. Urban Climate, 4, 115, https://doi.org/10.1016/j.uclim.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindberg, F., and Coauthors, 2018: Urban multiscale environmental predictor (UMEP) - An integrated tool for city-based climate services. Environ. Modell. Software, 99, 7087, https://doi.org/10.1016/j.envsoft.2017.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and L. Cao, 2013: The relationship between power load and meteorological factors with refined power load forecast in Shanghai (in Chinese). J. Appl. Meteor. Sci., 24, 455463.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., C. S. B. Grimmond, B. D. Offerle, D. T. Young, T. E. L. Smith, L. Järvi, and F. Lindberg, 2011: Local-scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. J. Appl. Meteor. Climatol., 50, 185202, https://doi.org/10.1175/2010JAMC2474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., F. Lindberg, O. Jorba, S. Kotthaus, S. Grossman-Clarke, and C. S. B. Grimmond, 2013: High resolution simulation of surface heat flux variability across central London with urban zones for energy partitioning. Bound.-Layer Meteor., 147, 493523, https://doi.org/10.1007/s10546-013-9797-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., Q. Wang, Y. Zhang, P. Sun, and Y. Qian, 2016: An estimate of anthropogenic heat emissions in China. Int. J. Climatol., 36, 11341142, https://doi.org/10.1002/joc.4407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makinen, J., 2014: For central heat, China has a north-south divide at Qin-Huai line. Los Angeles Times, 15 November, http://www.latimes.com/world/asia/la-fg-china-heat-20141115-story.html.

  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, https://doi.org/10.5194/gmd-6-929-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., and Coauthors, 2008: Responses of surface conductance to forest environments in the Far East. Agric. For. Meteor., 148, 19261940, https://doi.org/10.1016/j.agrformet.2008.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaughey, J. H., 1985: Energy balance storage terms in a mature mixed forest at Petawawa, Ontario—A case study. Bound.-Layer Meteor., 31, 89101, https://doi.org/10.1007/BF00120036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMaster, G. S., and W. W. Wilhelm, 1997: Growing degree-days: One equation, two interpretations. Agric. For. Meteor., 87, 291300, https://doi.org/10.1016/S0168-1923(97)00027-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyn, S. K., 2001: Heat fluxes through roofs and their relevance to estimates of urban heat storage. Ph. D. dissertation, University of British Columbia, 118 pp.

  • Miao, S. G., and F. Chen, 2014: Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled model. Sci. China Earth Sci., 57, 24082416, https://doi.org/10.1007/s11430-014-4829-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, V. G., R. G. Mein, and T. A. Mcmahon, 2001: Modelling the urban water cycle. Environ. Modell. Software, 16, 615629, https://doi.org/10.1016/S1364-8152(01)00029-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, V. G., H. A. Cleugh, C. S. B. Grimmond, and J. Xu, 2008: Linking urban water balance and energy balance models to analyse urban design options. Hydrol. Processes, 22, 28912900, https://doi.org/10.1002/hyp.6868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205224.

  • Nakayoshi, M., R. Moriwaki, T. Kawai, and M. Kanda, 2009: Experimental study on rainfall interception over an outdoor urban-scale model. Water Resour. Res., 45, W04415, https://doi.org/10.1029/2008WR007069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narita, K., T. Sekine, and T. Tokuoka, 1984: Thermal properties of urban surface materials—Study on heat balance at asphalt pavement. Geogr. Rev. Japan, 57, 639651, https://doi.org/10.4157/grj1984a.57.9_639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, W., B. F. Zaitchik, G. Ni, and T. Sun, 2017: Impacts of anthropogenic heat on summertime rainfall in Beijing. J. Hydrometeor., 18, 693712, https://doi.org/10.1175/JHM-D-16-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, M. D., 1981: The moisture and thermal regimes of a bare soil in the lower Fraser valley during spring. Ph. D. dissertation, University of British Columbia, 175 pp.

  • Ogink-Hendriks, M. J., 1995: Modelling surface conductance and transpiration of an oak forest in the Netherlands. Agric. For. Meteor., 74, 99118, https://doi.org/10.1016/0168-1923(94)02180-R.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, https://doi.org/10.1177/030913338801200401.

  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation or two cities. J. Appl. Meteor. Climatol., 47, 10381060, https://doi.org/10.1175/2007JAMC1597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafael, S., H. Martins, M. Marta-Almeida, E. Sa, S. Coelho, A. Rocha, C. Borrego, and M. Lopes, 2017: Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal). Environ. Res., 155, 321334, https://doi.org/10.1016/j.envres.2017.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragab, R., J. Bromley, P. Rosier, J. D. Cooper, and J. H. C. Gash, 2003: Experimental study of water fluxes in a residential area: 1. Rainfall, roof runoff and evaporation: The effect of slope and aspect. Hydrol. Processes, 17, 24092422, https://doi.org/10.1002/hyp.1250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, S. M., T. R. Oke, C. S. B. Grimmond, and J. A. Voogt, 2006: Comparison of four methods to estimate urban heat storage. J. Appl. Meteor. Climatol., 45, 17661781, https://doi.org/10.1175/JAM2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., C. Jansson, and E. Velasco, 2017: Multi-year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city. Int. J. Climatol., 37, 26792698, https://doi.org/10.1002/joc.4873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189199, https://doi.org/10.1002/joc.2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and L. Lu, 2004: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ., 38, 27372748, https://doi.org/10.1016/j.atmosenv.2004.01.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and C. Vasireddy, 2006: Correcting aggregate energy consumption data to account for variability in local weather. Environ. Modell. Software, 21, 733738, https://doi.org/10.1016/j.envsoft.2005.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., M. Georgescu, J. M. Milne, and M. A. Hart, 2015: Development of a national anthropogenic heating database with an extrapolation for international cities. Atmos. Environ., 118, 718, https://doi.org/10.1016/j.atmosenv.2015.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, https://doi.org/10.1002/2013JD021225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanghai Municipal Statistics Bureau, 2016: Shanghai Statistical Year Book 2016. China Statistics Press, 473 pp., http://www.stats-sh.gov.cn/html/sjfb/201701/1000339.html.

  • Shanghai Municipal Statistics Bureau of Xuhui District, 2013: Statistical year book of Xuhui District. http://sis.xh.sh.cn/login.action.

  • Shi, Y., X. Gao, Y. Xu, F. Giorgi, and D. Chen, 2016: Effects of climate change on heating and cooling degree days and potential energy demand in the household sector of China. Climate Res., 67, 135149, https://doi.org/10.3354/cr01360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • South, C., C. S. B. Grimmond, and C. P. Wolfe, 1998: Evapotranspiration rates from wetlands with different disturbance histories: Indiana Dunes National Lakeshore. Wetlands, 18, 216229, https://doi.org/10.1007/BF03161657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, https://doi.org/10.1175/BAMS-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and C. A. Kennedy, 2017: Metabolic heat production by human and animal populations in cities. Int. J. Biometeor., 61, 11591171, https://doi.org/10.1007/s00484-016-1296-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, J. B., 1988: Modelling surface conductance of pine forest. Agric. For. Meteor., 43, 1935, https://doi.org/10.1016/0168-1923(88)90003-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., X. Zhi, J. Bian, R. Li, and J. Sun, 2014: Research on the influence of precipitation on traffic characteristics of urban expressway in Shanghai (in Chinese). Atmos. Sci. Res. Appl., 1, 6876.

    • Search Google Scholar
    • Export Citation
  • Sun</