Comparison and Evaluation of Statistical Rainfall Disaggregation and High-Resolution Dynamical Downscaling over Complex Terrain

B. Poschlod Department of Geography, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by B. Poschlod in
Current site
Google Scholar
PubMed
Close
,
Ø. Hodnebrog Center for International Climate and Environmental Research−Oslo, Oslo, Norway

Search for other papers by Ø. Hodnebrog in
Current site
Google Scholar
PubMed
Close
,
R. R. Wood Department of Geography, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by R. R. Wood in
Current site
Google Scholar
PubMed
Close
,
K. Alterskjær Center for International Climate and Environmental Research−Oslo, Oslo, Norway

Search for other papers by K. Alterskjær in
Current site
Google Scholar
PubMed
Close
,
R. Ludwig Department of Geography, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by R. Ludwig in
Current site
Google Scholar
PubMed
Close
,
G. Myhre Center for International Climate and Environmental Research−Oslo, Oslo, Norway

Search for other papers by G. Myhre in
Current site
Google Scholar
PubMed
Close
, and
J. Sillmann Center for International Climate and Environmental Research−Oslo, Oslo, Norway

Search for other papers by J. Sillmann in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Representative methods of statistical disaggregation and dynamical downscaling are compared in terms of their ability to disaggregate precipitation data into hourly resolution in an urban area with complex terrain. The nonparametric statistical Method of Fragments (MoF) uses hourly data from rain gauges to split the daily data at the location of interest into hourly fragments. The high-resolution, convection-permitting Weather Research and Forecasting (WRF) regional climate model is driven by reanalysis data. The MoF can reconstruct the variance, dry proportion, wet hours per month, number and length of wet spells per rainy day, timing of the maximum rainfall burst, and intensities of extreme precipitation with errors of less than 10%. However, the MoF cannot capture the spatial coherence and temporal interday connectivity of precipitation events due to the random elements involved in the algorithm. Otherwise, the statistical method is well suited for filling gaps in subdaily historical records. The WRF Model is able to reproduce dry proportion, lag-1 autocorrelation, wet hours per month, number and length of wet spells per rainy day, spatial correlation, and 6- and 12-h intensities of extreme precipitation with errors of 10% or less. The WRF approach tends to underestimate peak rainfall of 1- and 3-h aggregates but can be used where no observations are available or when areal precipitation data are needed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0132.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Poschlod, benjamin.poschlod@campus.lmu.de

Abstract

Representative methods of statistical disaggregation and dynamical downscaling are compared in terms of their ability to disaggregate precipitation data into hourly resolution in an urban area with complex terrain. The nonparametric statistical Method of Fragments (MoF) uses hourly data from rain gauges to split the daily data at the location of interest into hourly fragments. The high-resolution, convection-permitting Weather Research and Forecasting (WRF) regional climate model is driven by reanalysis data. The MoF can reconstruct the variance, dry proportion, wet hours per month, number and length of wet spells per rainy day, timing of the maximum rainfall burst, and intensities of extreme precipitation with errors of less than 10%. However, the MoF cannot capture the spatial coherence and temporal interday connectivity of precipitation events due to the random elements involved in the algorithm. Otherwise, the statistical method is well suited for filling gaps in subdaily historical records. The WRF Model is able to reproduce dry proportion, lag-1 autocorrelation, wet hours per month, number and length of wet spells per rainy day, spatial correlation, and 6- and 12-h intensities of extreme precipitation with errors of 10% or less. The WRF approach tends to underestimate peak rainfall of 1- and 3-h aggregates but can be used where no observations are available or when areal precipitation data are needed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0132.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Poschlod, benjamin.poschlod@campus.lmu.de

Supplementary Materials

    • Supplemental Materials (PDF 1.25 MB)
Save
  • Arnbjerg-Nielsen, K., P. Willems, J. Olsson, S. Beecham, A. Pathirana, I. B. Gregersen, H. Madsen, and V. T. V. Nguyen, 2013: Impacts of climate change on rainfall extremes and urban drainage systems: a review. Water Sci. Technol., 68, 1628, https://doi.org/10.2166/wst.2013.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2011: Updated temperature and precipitation scenarios for Norwegian climate regions. Met.no Rep. 16/2011, 111 pp., https://www.met.no/publikasjoner/met-report/met-report-2011.

  • Bennett, J. C., D. E. Robertson, P. G. D. Ward, H. A. Prasantha Hapuarachchi, and Q. J. Wang, 2016: Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments. Environ. Modell. Software, 76, 2036, https://doi.org/10.1016/j.envsoft.2015.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruni, G., R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis, 2015: On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution. Hydrol. Earth Syst. Sci., 19, 691709, https://doi.org/10.5194/hess-19-691-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Cristiano, E., M.-C. ten Veldhuis, and N. van de Giesen, 2017: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – A review. Hydrol. Earth Syst. Sci., 21, 38593878, https://doi.org/10.5194/hess-21-3859-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyrrdal, A. V., T. Skaugen, F. Stordal, and E. J. Førland, 2016: Estimating extreme areal precipitation in Norway from a gridded dataset. Hydrol. Sci. J., 61, 483494, https://doi.org/10.1080/02626667.2014.947289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyrrdal, A. V., F. Stordal, and C. Lussana, 2018: Evaluation of summer precipitation from EURO-CORDEX fine-scale RCM simulations over Norway. Int. J. Climatol., 38, 16611677, https://doi.org/10.1002/joc.5287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EEA, 2018: Europe coastline shapefile. European Environment Agency, accessed 27 April 2018, https://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-analysis-1/gis-data/europe-coastline-shapefile.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Gregersen, I., H. Sørup, H. Madsen, D. Rosbjerg, P. Mikkelsen, and K. Arnbjerg-Nielsen, 2013: Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Climatic Change, 118, 783797, https://doi.org/10.1007/s10584-012-0669-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlandt, U., A.-D. Ebner von Eschenbach, and I. Buchwald, 2008: A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst. Sci., 12, 13531367, https://doi.org/10.5194/hess-12-1353-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., and Coauthors, 2009: Klima i Norge 2100. Bakgrunnsmateriale til NOU klimatilpassing. NCCS Rep. 2/2015, 204 pp.

  • Heikkilä, U., A. Sandvik, and A. Sorteberg, 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 15511564, https://doi.org/10.1007/s00382-010-0928-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. Dudhia, J. F. Gonzalez–Rouco, J. Navarro, J. P. Montavez, and E. Garcia–Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World Map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, https://doi.org/10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutsoyiannis, D., 2003: Rainfall disaggregation methods: Theory and applications. Proc. Workshop on Statistical and Mathematical Methods for Hydrological Analysis, Rome, Italy, University of Rome, 1–23, http://itia.ntua.gr/getfile/570/1/documents/2003RainDisag.pdf.

  • Lall, U., and A. Sharma, 1996: A nearest neighbor bootstrap for time series resampling. Water Resour. Res., 32, 679693, https://doi.org/10.1029/95WR02966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2018: Three resampling approaches based on method of fragments for daily-to-subdaily precipitation disaggregation. Int. J. Climatol., 38, e1119e1138, https://doi.org/10.1002/joc.5438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, S., C. Fox Maule, S. Sobolowski, O. B. Christensen, H. J. D. Sørup, M. A. Sunyer, K. Arnbjerg-Nielsen, and I. Barstad, 2015: Identifying added value in high-resolution climate simulations over Scandinavia. Tellus, 67A, 24941, https://doi.org/10.3402/tellusa.v67.24941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 22 February 2018, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • NMI, 2018: eKlima. Norwegian Meteorological Institute, accessed 12 February 2018, http://eKlima.met.no.

  • Ochoa-Rodriguez, S., and Coauthors, 2015: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J. Hydrol., 531, 389407, https://doi.org/10.1016/j.jhydrol.2015.05.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, and D. J. Gochis, 2017: The Weather Research and Forecasting (WRF) Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pui, A., A. Sharma, R. Mehrotra, B. Sivakumar, and E. Jeremiah, 2012: A comparison of alternatives for daily to sub-daily rainfall disaggregation. J. Hydrol., 470–471, 138157, https://doi.org/10.1016/j.jhydrol.2012.08.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, J. E., S. Halldin, C. Y. Xu, J. Seibert, and A. Kauffeldt, 2017: Sub-daily runoff predictions using parameters calibrated on the basis of data with a daily temporal resolution. J. Hydrol., 550, 399411, https://doi.org/10.1016/j.jhydrol.2017.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., and S. Srikanthan, 2006: Continuous rainfall simulation: A nonparametric alternative. 30th Hydrology & Water Resources Symp.: Past, Present & Future, Launceston, Australia, Institution of Engineers, 86–91.

  • Sillmann, J., and Coauthors, 2017: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Wea. Climate Extremes, 18, 6574, https://doi.org/10.1016/j.wace.2017.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Socolofsky, S., E. E. Adams, and D. Entekhabi, 2001: Disaggregation of daily rainfall for continuous watershed modeling. J. Hydrol. Eng., 6, 300309, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:4(300).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Tabari, H., and Coauthors, 2016: Local impact analysis of climate change on precipitation extremes: Are high-resolution climate models needed for realistic simulations? Hydrol. Earth Syst. Sci., 20, 38433857, https://doi.org/10.5194/hess-20-3843-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Tjelta, T., and J. Mamen, 2014: Climate trends and variability of rain rate derived from long-term measurements in Norway. Radio Sci., 49, 788797, https://doi.org/10.1002/2014RS005477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weibull, W., 1939: A statistical theory of the strength of materials. Ing. Vetensk. Akad. Handl., 151, 145.

  • Westra, S., R. Mehrotra, A. Sharma, and R. Srikanthan, 2012: Continuous rainfall simulation: 1. A regionalized subdaily disaggregation approach. Water Resour. Res., 48, W01535, https://doi.org/10.1029/2011WR010489.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1096 380 96
PDF Downloads 883 172 11