On the Role of NAO-Driven Interannual Variability in Rainfall Seasonality on Water Resources and Hydrologic Design in a Typical Mediterranean Basin

Roberto Corona Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università di Cagliari, Cagliari, Italy

Search for other papers by Roberto Corona in
Current site
Google Scholar
PubMed
Close
,
Nicola Montaldo Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università di Cagliari, Cagliari, Italy

Search for other papers by Nicola Montaldo in
Current site
Google Scholar
PubMed
Close
, and
John D. Albertson School of Civil and Environmental Engineering, Cornell University, Ithaca, New York

Search for other papers by John D. Albertson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the last several decades, extended dry periods have affected the Mediterranean area with dramatic impacts on water resources. Climate models are predicting further warming, with negative effects on water availability. The authors analyze the hydroclimatic tendencies of a typical Mediterranean basin, the Flumendosa basin located in Sardinia, an island in the center of the Mediterranean Sea, where in the last 30 years a sequence of dry periods has seriously impacted the water management system. Interestingly, in the historic record the annual runoff reductions have been more pronounced than the annual precipitation reductions. This paper performs an analysis that links this runoff decrease to changes in the total annual precipitation and its seasonal structure. The seasonality is a key determinant of the surface runoff process, as it reflects the degree to which rainfall is concentrated during the winter. The observed reductions in winter precipitation are shown here to be well correlated (Pearson correlation coefficient of −0.5) with the North Atlantic Oscillation (NAO) index. Considering the predictability of the winter NAO, there is by extension an opportunity to predict future winter precipitation and runoff tendencies. The recent hydroclimatic trends are shown to impact hydrologic design criteria for water resources planning. The authors demonstrate that there is a dangerous increase of the drought severity viewed from the perspective of water resources planning.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roberto Corona, roberto.corona@unica.it

Abstract

In the last several decades, extended dry periods have affected the Mediterranean area with dramatic impacts on water resources. Climate models are predicting further warming, with negative effects on water availability. The authors analyze the hydroclimatic tendencies of a typical Mediterranean basin, the Flumendosa basin located in Sardinia, an island in the center of the Mediterranean Sea, where in the last 30 years a sequence of dry periods has seriously impacted the water management system. Interestingly, in the historic record the annual runoff reductions have been more pronounced than the annual precipitation reductions. This paper performs an analysis that links this runoff decrease to changes in the total annual precipitation and its seasonal structure. The seasonality is a key determinant of the surface runoff process, as it reflects the degree to which rainfall is concentrated during the winter. The observed reductions in winter precipitation are shown here to be well correlated (Pearson correlation coefficient of −0.5) with the North Atlantic Oscillation (NAO) index. Considering the predictability of the winter NAO, there is by extension an opportunity to predict future winter precipitation and runoff tendencies. The recent hydroclimatic trends are shown to impact hydrologic design criteria for water resources planning. The authors demonstrate that there is a dangerous increase of the drought severity viewed from the perspective of water resources planning.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roberto Corona, roberto.corona@unica.it
Save
  • Altın, T. B., and B. Barak, 2014: Changes and trends in total yearly precipitation of the Antalya District, Turkey. Procedia Soc. Behav. Sci., 120, 586599, https://doi.org/10.1016/j.sbspro.2014.02.139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and R. J. Chorley, 1992: Atmosphere, Weather and Climate. 6th ed. Routledge, 392 pp.

  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 7195, https://doi.org/10.1007/s10584-006-9226-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beranová, R., and J. Kyselý, 2016: Links between circulation indices and precipitation in the Mediterranean in an ensemble of regional climate models. Theor. Appl. Climatol., 123, 693701, https://doi.org/10.1007/s00704-015-1381-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandimarte, L., G. G. Baldassarre, G. Bruni, P. D’Odorico, and A. Montanari, 2011: Relation between the North-Atlantic Oscillation and hydroclimatic conditions in Mediterranean areas. Water Resour. Manage., 25, 12691279, https://doi.org/10.1007/s11269-010-9742-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunetti, M., M. Colacino, M. Maugeri, and T. Nanni, 2001: Trends in the daily intensity of precipitation in Italy from 1951 to 1996. Int. J. Climatol., 21, 299316, https://doi.org/10.1002/joc.613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunetti, M., M. Maugeri, and T. Nanni, 2002: Atmospheric circulation and precipitation in Italy for the last 50 years. Int. J. Climatol., 22, 14551471, https://doi.org/10.1002/joc.805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., R. Silvano, and A. Fadda, 1998: Nuovo Studio dell’idrologia superficiale della Sardegna. Ente Autonomo del Flumendosa, http://pcserver.unica.it/web/sechi/main/Corsi/Didattica/IDROLOGIA/DatiSISS/index.htm.

  • Chang, T. J., and J. R. Stenson, 1990: Is it realistic to define a 100-year drought for water management. Water Resour. Bull., 26, 823829, https://doi.org/10.1111/j.1752-1688.1990.tb01416.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., W. J. Young, and W. Cai, 2011: Current drought and future hydro-climate projection in Southeast Australia and implication for water management. Stochastic Environ. Res. Risk Assess., 25, 601612, https://doi.org/10.1007/s00477-010-0424-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 1999: Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol., 216, 99110, https://doi.org/10.1016/S0022-1694(98)00293-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clausen, B., and C. P. Pearson, 1995: Regional frequency analysis of annual maximum streamflow drought. J. Hydrol., 173, 111130, https://doi.org/10.1016/0022-1694(95)02713-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conte, M., S. Giuffrida, and S. Tedesco, 1989: The Mediterranean oscillation: Impact on precipitation and hydrology in Italy. Proceedings of the Conference on Climate and Water, Publications of the Academy of Finland, 121–137.

  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global dataset of Palmer drought severity index for 1870–2004: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, https://doi.org/10.1175/JHM-386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delitala, A. M. S., D. Cesari, P. A. Chessa, and M. N. Ward, 2000: Precipitation over Sardinia (Italy) during the 1946–1993 rainy seasons and associated large-scale climate variations. Int. J. Climatol., 20, 519541, https://doi.org/10.1002/(SICI)1097-0088(200004)20:5<519::AID-JOC486>3.0.CO;2-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Detto, M., N. Montaldo, J. D. Albertson, M. Mancini, and G. Katul, 2006: Soil moisture and vegetation controls on evapotranspiration in an heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res., 42, W08419, https://doi.org/10.1029/2005WR004693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and F. Giorgi, 2012: Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change, 114, 813822, https://doi.org/10.1007/s10584-012-0570-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2015: Physical Hydrology. 3rd ed. Waveland Press, 643 pp.

  • Doblas-Miranda, E., and Coauthors, 2015: Reassessing global change research priorities in mediterranean terrestrial ecosystems: How far have we come and where do we go from here? Global Ecol. Biogeogr., 24, 2543, https://doi.org/10.1111/geb.12224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dracup, J. A., K. S. Lee, E. G. Paulson Jr., 1980: On the definition of droughts. Water Resour. Res., 16, 297302, https://doi.org/10.1029/WR016i002p00297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkeloh, A., and J. Jacobeit, 2003: Circulation dynamics of Mediterranean precipitation variability 1948–98. Int. J. Climatol., 23, 18431866, https://doi.org/10.1002/joc.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • European Commission, 2007: Addressing the challenge of water scarcity and droughts. COM(2007)414, 14 pp., http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2007:0414:FIN:EN:PDF.

  • Gao, P., X. M. Mu, F. Wang, and R. Li, 2011: Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci., 15, 110, https://doi.org/10.5194/hess-15-1-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Ruiz, J. M., J. I. López-Moreno, S. M. Serrano-Vicente, S. Beguería, and T. Lasanta, 2011: Mediterranean water resources in a global change scenario. Earth Sci. Rev., 105, 121139, https://doi.org/10.1016/j.earscirev.2011.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734.

  • Hargreaves, G. H. and Z. A. Samni, 1982: Estimation of potential evapotranspiration. J. Irrig. Drain. Div., Proc. Amer. Soc. Civ. Eng., 108, 223230.

    • Search Google Scholar
    • Export Citation
  • Helsel, D. R., and R. M. Hirsch, 2002: Statistical methods in water resources. Hydrologic Analysis and Interpretation, Book 4, Techniques of Water-Resources Investigations of the United States Geological Survey, 522 pp., https://pubs.usgs.gov/twri/twri4a3/.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. Van Loon, 1997: Decadal variations associated with the North Atlantic Oscillation. Climatic Change, 36, 301326, https://doi.org/10.1023/A:1005314315270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiswal, R. K., K. Lohani, and H. L. Tiwari, 2015: Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Processes, 2, 729749, https://doi.org/10.1007/s40710-015-0105-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1938: A new measure of rank correlation. Biometrika, 30, 8193, https://doi.org/10.1093/biomet/30.1-2.81.

  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Lespinas, F., W. Ludwig, and S. Heussner, 2010: Impact of recent climate change on the hydrology of coastal Mediterranean rivers in southern France. Climatic Change, 99, 425456, https://doi.org/10.1007/s10584-009-9668-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Coauthors, 2006: Cyclones in the Mediterranean region: Climatology and effects on the environment. Dev. Earth Environ. Sci., 4, 325372, https://doi.org/10.1016/S1571-9197(06)80009-1.

    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., M. Beniston, and J. M. García-Ruiz, 2008: Environmental change and water management in the Pyrenees: Facts and future perspectives for Mediterranean mountains. Global Planet. Change, 61, 300312, https://doi.org/10.1016/j.gloplacha.2007.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. M. Vicente-Serrano, E. Morán-Tejeda, J. Lorenzo-Lacruz, A. Kenawy, and M. Beniston, 2011: Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global Planet. Change, 77, 6276, https://doi.org/10.1016/j.gloplacha.2011.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. I. López-Moreno, E. Morán-Tejeda, and J. Zabalza, 2012: Recent trends in Iberian streamflows (1945–2005). J. Hydrol., 414–415, 463475, https://doi.org/10.1016/j.jhydrol.2011.11.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., 1993: Handbook of Hydrology. McGraw-Hill, 1424 pp.

  • Manara, V., M. Brunetti, A. Celozzi, M. Maugeri, A. Sanchez-Lorenzo, and M. Wild, 2016: Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmos. Chem. Phys., 16, 11 14511 161, https://doi.org/10.5194/acp-16-11145-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., N. Zeng, J.-H. Yoon, V. Artale, A. Navarra, P. Alpert, and L. Z. X. Li, 2008: Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett., 3, 044001, https://doi.org/10.1088/1748-9326/3/4/044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markham, C. G., 1970: Seasonality of precipitation in the United States. Ann. Assoc. Amer. Geogr., 60, 593597, https://doi.org/10.1111/j.1467-8306.1970.tb00743.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Fernández, J., N. Sánchez, and C. M. Herrero-Jiménez, 2013: Recent trends in rivers with near-natural flow regime: The case of the river headwaters in Spain. Prog. Phys. Geogr., 37, 685700, https://doi.org/10.1177/0309133313496834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, W., 2008: Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Climate Dyn., 30, 581603, https://doi.org/10.1007/s00382-007-0309-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montaldo, N., J. D. Albertson, and M. Mancini, 2010: Vegetation dynamics and soil water balance in a water-limited Mediterranean ecosystem on Sardinia, . Italy. Hydrol. Earth Syst. Sci., 12, 12571271, https://doi.org/10.5194/hess-12-1257-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montaldo, N., R. Corona, and J. D. Albertson, 2013: On the separate effects of soil and land cover on Mediterranean ecohydrology: Two contrasting case studies in Sardinia, Italy. Water Resour. Res., 49, 11231136, https://doi.org/10.1029/2012WR012171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., K. R. Briffa, S. F. B. Tett, P. D. Jones, and R. M. Trigo, 1999: Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Climate Dyn., 15, 685702, https://doi.org/10.1007/s003820050310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozturk, T., Z. P. Ceber, M. Türkeş, and M. L. Kurnaz, 2015: Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol., 35, 42764292, https://doi.org/10.1002/joc.4285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 1979: A non-parametric approach to the change point problem. Appl. Stat., 28, 126135, https://doi.org/10.2307/2346729.

  • Piervitali, E., M. Conte, and M. Colacino, 1999: Rainfall over the central-western Mediterranean basin in the period 1951–1995. Part II: Precipitation scenarios. Nuovo Cimento, 22 (5), 649661.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., U. Ulbrich, G. C. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dyn., 29, 195210, https://doi.org/10.1007/s00382-007-0230-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piras, M., G. Mascaro, R. Deidda, and E.R. Vivoni, 2014: Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrol. Earth Syst. Sci., 18, 52015217, https://doi.org/10.5194/hess-18-5201-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2011: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010WR009826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, M., M. Rojas, L. Z. Li, M. Kanakidou, N. Hatzianastassiou, G. Seze, and H. Le Treut, 2013: Winter weather regimes over the Mediterranean region: Their role for the regional climate and projected changes in the twenty-first century. Climate Dyn., 41, 551571, https://doi.org/10.1007/s00382-013-1823-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romano, E., A. B. Petrangeli, and E. Preziosi, 2011: Spatial and time analysis of rainfall in the Tiber River basin (central Italy) in relation to discharge measurements (1920–2010). Procedia Environ. Sci., 7, 258263, https://doi.org/10.1016/j.proenv.2011.07.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankarasubramanian, A., R. M. Vogel, and J. F. Limbrunner, 2001: Climate elasticity of streamflow in the United States. Water Resour. Res., 37, 17711781, https://doi.org/10.1029/2000WR900330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., A. Arribas, E. Blockey, A. Brookshaw, R. T. Clark, and N. Dunstone, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and L. Chunzhen, 1989: Development and application of simple water balance models to understand the relationship between climate and water resources. IAHS Publ., 181, 343352.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., A. A. Scaife, R. Eade, and J. R. Knight, 2016: Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects. Quart. J. Roy. Meteor. Soc., 142, 611617, https://doi.org/10.1002/qj.2479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Statzu, V. and E. Strazzera, 2009: Water demand for residential uses in a Mediterranean region: Econometric analysis and policy implications. University of Cagliari Working Paper, 31 pp., http://www.cide.info/conf/2009/iceee2009_submission_88.pdf.

  • Theil, H., 1950: A rank-invariant method for linear and polynomial regression analysis. Proc. K. Ned. Akad. Wet., Ser. A, 53, 386392, 512–525, 1397–1412.

    • Search Google Scholar
    • Export Citation
  • Thiessen, A. H., 1911: Precipitation for large areas. Mon. Wea. Rev., 39, 12481254, https://doi.org/10.1175/1520-0493(1911)39<1248a:DNGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 2000: Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys. Res. Lett., 27, 29132916, https://doi.org/10.1029/2000GL011526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., and J. P. Palutikof, 2001: Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques. J. Climate, 14, 44224446, https://doi.org/10.1175/1520-0442(2001)014<4422:PSOIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551559, https://doi.org/10.1007/s003820050299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2011: The NAO impact on droughts in the Mediterranean region. Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region, S. M. Vincente-Serrano and R. Trigo, Eds., Advances in Global Change Research, Vol. 46, Springer, 23–40, https://doi.org/10.1007/978-94-007-1372-7_3.

    • Crossref
    • Export Citation
  • Wanders, N., and Y. Wada, 2015: Human and climate impacts on the 21st century hydrological drought. J. Hydrol., 526, 208220, https://doi.org/10.1016/j.jhydrol.2014.10.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., J. Qi, X. Xu, D. Yang, and H. Lv, 2014:The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol., 517, 607616, https://doi.org/10.1016/j.jhydrol.2014.05.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yevjevich, V., 1967: An objective approach to definition and investigation of continental hydrological droughts. Colorado State University Hydrology Papers 23, 19 pp., http://hdl.handle.net/10217/61303.

  • Zelenhasić, E., and A. Salvai, 1987: A method of streamflow analysis. Water Resour. Res., 23, 156168, https://doi.org/10.1029/WR023i001p00156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., and X. X. Lu, 2009: Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena, 77, 130142, https://doi.org/10.1016/j.catena.2008.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., B. Yu, L. Zhang, Y. Huang, M. Pan, and G. Wang, 2016: A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship. Water Resour. Res., 52, 71637177, https://doi.org/10.1002/2016WR019046.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 468 86 4
PDF Downloads 344 60 3