Trends in U.S. Hourly Precipitation Variance 1949–2009

L. M. Canel Center for Urban Science and Progress, New York University, New York, New York

Search for other papers by L. M. Canel in
Current site
Google Scholar
PubMed
Close
and
J. I. Katz Department of Physics, and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri

Search for other papers by J. I. Katz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drawing from a NOAA database of hourly precipitation data from 5995 stations in the contiguous United States over the period 1949–2009, the authors investigate possible trends in the variance of the hourly precipitation, averaged over the diurnal and annual cycles and normalized by the square of the mean precipitation at that site. This normalized variance is a measure of storminess, distinct from increases in precipitation attributable to warming. For the 1722 stations surviving quality control with data on at least 80% of days in at least 30 years, the authors compute the rate of change of the logarithm of the normalized variance at each station and set bounds on its mean (over stations) trend. The logarithmic function weights the trends at calm stations equally to those at stormy stations and enhances the statistical power of the mean. The authors find a logarithmic rate of change of the mean normalized variance of yr−1 (). The upper bounds on any continentally averaged trend, increasing or decreasing, are about 0.001 yr−1 (doubling or halving times > 1000 years). It is found that the normalized variance in the Los Angeles basin has increased at a statistically significant rate. This may be attributable to a decrease in the number of aerosol condensation nuclei. Upper bounds are set on any effect of the 11-yr solar cycle.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. I. Katz, katz@wuphys.wustl.edu

Abstract

Drawing from a NOAA database of hourly precipitation data from 5995 stations in the contiguous United States over the period 1949–2009, the authors investigate possible trends in the variance of the hourly precipitation, averaged over the diurnal and annual cycles and normalized by the square of the mean precipitation at that site. This normalized variance is a measure of storminess, distinct from increases in precipitation attributable to warming. For the 1722 stations surviving quality control with data on at least 80% of days in at least 30 years, the authors compute the rate of change of the logarithm of the normalized variance at each station and set bounds on its mean (over stations) trend. The logarithmic function weights the trends at calm stations equally to those at stormy stations and enhances the statistical power of the mean. The authors find a logarithmic rate of change of the mean normalized variance of yr−1 (). The upper bounds on any continentally averaged trend, increasing or decreasing, are about 0.001 yr−1 (doubling or halving times > 1000 years). It is found that the normalized variance in the Los Angeles basin has increased at a statistically significant rate. This may be attributable to a decrease in the number of aerosol condensation nuclei. Upper bounds are set on any effect of the 11-yr solar cycle.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. I. Katz, katz@wuphys.wustl.edu
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552, https://doi.org/10.1007/s10712-012-9213-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., D. J. Gianotti, and G. D. Salvucci, 2015: Detectability of historical trends in station-based precipitation characteristics over the continental United States. J. Geophys. Res. Atmos., 120, 48424859, https://doi.org/10.1002/2014JD022960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balling, R. C., Jr., and G. B. Goodrich, 2011: Spatial analysis of variations in precipitation intensity in the USA. Theor. Appl. Climatol., 104, 415421, https://doi.org/10.1007/s00704-010-0353-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbero, R., H. J. Fowler, G. Lenderink, and S. Blenkinsop, 2017: Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett., 44, 974983, https://doi.org/10.1002/2016GL071917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Befort, D. J., S. Wild, T. Kruschke, U. Ulbrich, and G. C. Leckebusch, 2016: Different long-term trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmos. Sci. Lett., 17, 586595, https://doi.org/10.1002/asl.694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., J. O. Haerter, P. Thejil, C. Piani, S. Hagemann, and J. H. Christensen, 2009: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res., 114, D18102, https://doi.org/10.1029/2009JD012008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperature. Nat. Geosci., 6, 181185, https://doi.org/10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavanaugh, N. R., A. Gershunov, A. K. Panorska, and T. J. Kozubowski, 2015: The probability distribution of intense daily precipitation. Geophys. Res. Lett., 42, 15601567, https://doi.org/10.1002/2015GL063238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, https://doi.org/10.1038/nclimate1452.

  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doremus, R. H., 1983: Fracture statistics: A comparison of the normal, Weibull and type I extreme value distributions. J. Appl. Phys., 54, 193198, https://doi.org/10.1063/1.331731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, B., 1948: Statistical aspects of fracture problems. J. Appl. Phys., 19, 1401C47, https://doi.org/10.1063/1.1698380.

  • Finkel, J., L. M. Canel-Katz, and J. I. Katz, 2016: Decreasing U. S. aridity in a warming climate. Int. J. Climatol., 36, 1560–1564, https://doi.org/10.1002/joc.4421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547554, https://doi.org/10.1002/2013GL058499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard Institute for Space Studies, 2012: GISS Surface Temperature Analysis (GISTEMP), accessed 20 January 2012, http://data.giss.nasa.gov/gistemp.

  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, https://doi.org/10.1175/JHM-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hartman, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hennessy, K. J., J. M. Gregory, and J. F. B. Mitchell, 1997: Changes in daily precipitation under enhanced greenhouse conditions. Climate Dyn., 13, 667680, https://doi.org/10.1007/s003820050189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., J. A. Curry, and J. A. Pyle, Eds., 2003: Encyclopedia of the Atmospheric Sciences. Academic Press, 2998 pp.

  • Horton, R. M., E. D. Coffel, J. M. Winter, and D. A. Bader, 2015: Projected changes in extreme temperature events based on the NARCCAP model suite. Geophys. Res. Lett., 42, 77227731, https://doi.org/10.1002/2015GL064914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, L. G., 1964: The Statistical Treatment of Fatigue Experiments. Elsevier, 116 pp.

  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16, 206223, https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231242, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. W. Knight, D. R. Easterling, and R. G. Quayle, 1996: Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279292, https://doi.org/10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, J. I., 1998: Statistics and microphysics of the fracture of glass. J. Appl. Phys., 84, 19281931, https://doi.org/10.1063/1.368321.

  • Katz, J. I., 1999: Atomistics of tensile failure in fused silica: weakest link models revisited. Optical Fiber Reliability and Testing, M. J. Matthewson, Ed., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 3848), 2–10, https://doi.org/10.1117/12.372756

    • Crossref
    • Export Citation
  • Katz, R. B., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the coterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. Stevens, S. E. Stevens, L. Sun, E. Janssen, D. Wuebbles, and J. G. Dobson, 2013a: Regional climate trends and scenarios for the U. S. National climate assessment: Part 9. Climate of the contiguous United States. NOAA Tech. Rep. NESDIS 142-9, 77 pp., https://www.nesdis.noaa.gov/sites/default/files/asset/document/NOAA_NESDIS_Tech_Report_142-9-Climate_of_the_Contiguous_United_States.pdf.

  • Kunkel, K. E., and Coauthors, 2013b: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, https://doi.org/10.1175/BAMS-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, and K. Frieler, 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501515, https://doi.org/10.1007/s10584-015-1434-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511515, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., H. Y. Mok, T. C. Lee, and G. J. van Oldenborgh, 2011: Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci., 15, 30333041, https://doi.org/10.5194/hess-15-3033-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., and J. R. Wallis, 1969: Some long-run properties of geophysical records. Water Resour. Res., 5, 321340, https://doi.org/10.1029/WR005i002p00321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and G. Branstator, 2012: Mechanisms contributing to the warming hole and the consequent U.S. east–west differential of heat extremes. J. Climate, 25, 63946408, https://doi.org/10.1175/JCLI-D-11-00655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams, 2005: Detection of undocumented change points using multiple test statistics and reference series. J. Climate, 18, 42714286, https://doi.org/10.1175/JCLI3524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., R. T. Weatherald, K. A. Dunne, and T. L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415, 514517, https://doi.org/10.1038/415514a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, T., and J. I. Katz, 2013: Trends in hourly rainfall statistics in the United States under a warming climate. Nat. Climate Change, 3, 577580, https://doi.org/10.1038/nclimate1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Climatic Data Center, 2011: Hourly precipitation data. U.S. National Oceanographic and Atmospheric Administration, accessed 31 October 2011, ftp://ftp.ncdc.noaa.gov/pub/data/hourly_precip-3240.

    • Search Google Scholar
    • Export Citation
  • Ning, L., E. E. Riddle, and R. S. Bradley, 2015: Projected changes in climate extremes over the northeastern United States. J. Climate, 28, 32893310, https://doi.org/10.1175/JCLI-D-14-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski Jr., C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a warming hole. Geophys. Res. Lett., 31, L17109, https://doi.org/10.1029/2004GL020528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., X. B. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, D07113, https://doi.org/10.1029/2007JD009453.

    • Search Google Scholar
    • Export Citation
  • Powell, E. J., and B. D. Keim, 2015: Trends in daily temperature and precipitation extremes in the southeastern United States. J. Climate, 28, 15921612, https://doi.org/10.1175/JCLI-D-14-00410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate and the hydrological cycle. Science, 294, 21192124, https://doi.org/10.1126/science.1064034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhode, R., and Coauthors, 2013: A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinf. Geostat., 1, http://dx.doi.org/10.4172/2327-4581.1000101.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Lean, J. Lerner, P. Lonergan, and A. Leboissitier, 2008: Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., 113, D24103, https://doi.org/10.1029/2008JD010114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796, https://doi.org/10.1126/science.287.5459.1793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, S., J. Zscheischler, M. Heimann, H. Lange, M. D. Mahecha, G. J. van Oldenborgh, F. E. L. Otto, and M. Reichstein, 2017: Have precipitation extremes and annual totals been increasing in the world’s dry regions over the last 60 years? Hydrol. Earth Syst. Sci., 21, 441458, https://doi.org/10.5194/hess-21-441-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and Coauthors, 2016: Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev.: Climate Change, 7, 2341, https://doi.org/10.1002/wcc.380.

    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Y. Gan, and D. Shao, 2017: Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada. J. Hydrol., 550, 453465, https://doi.org/10.1016/j.jhydrol.2017.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Climatic Change, 39, 667694, https://doi.org/10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, https://doi.org/10.1029/2011GL048426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. Smith, and G. Vecchi, 2013: Changing frequency of heavy rainfall over the central United States. J. Climate, 26, 351357, https://doi.org/10.1175/JCLI-D-12-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. C., H. Y. Mok, and T. C. Lee, 2011: Observed changes in extreme weather indices in Hong Kong. Int. J. Climatol., 31, 23002311, https://doi.org/10.1002/joc.2238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571583, https://doi.org/10.1175/BAMS-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 146 6
PDF Downloads 159 41 4