How Well Does Noah-MP Simulate the Regional Mean and Spatial Variability of Topsoil Water Content in Two Agricultural Landscapes in Southwest Germany?

M. Poltoradnev Institute of Soil Science and Land Evaluation, Biogeophysics, Universität Hohenheim, Stuttgart, Germany

Search for other papers by M. Poltoradnev in
Current site
Google Scholar
PubMed
Close
,
J. Ingwersen Institute of Soil Science and Land Evaluation, Biogeophysics, Universität Hohenheim, Stuttgart, Germany

Search for other papers by J. Ingwersen in
Current site
Google Scholar
PubMed
Close
,
K. Imukova Institute of Soil Science and Land Evaluation, Biogeophysics, Universität Hohenheim, Stuttgart, Germany

Search for other papers by K. Imukova in
Current site
Google Scholar
PubMed
Close
,
P. Högy Institute of Landscape and Plant Ecology, Plant Ecology and Ecotoxicology, Universität Hohenheim, Stuttgart, Germany

Search for other papers by P. Högy in
Current site
Google Scholar
PubMed
Close
,
H.-D. Wizemann Institute of Physics and Meteorology, Physics and Meteorology, Stuttgart, Germany

Search for other papers by H.-D. Wizemann in
Current site
Google Scholar
PubMed
Close
, and
T. Streck Institute of Soil Science and Land Evaluation, Biogeophysics, Universität Hohenheim, Stuttgart, Germany

Search for other papers by T. Streck in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial variability of topsoil water content (SWC) is often expressed through the relationship between its spatial mean 〈θ〉 and standard deviation σθ. The present study tests the concept that a reasonably performing land surface model (LSM) should be able to produce σθ–〈θ〉 data pairs that fall into a polygon, spanned by the cloud of observed data and two anchor points: σθ at the permanent wilting point σθ–〈θwp〉 and σθ at saturation σθ–〈θs〉. A state-of-the-art LSM, Noah-MP, was driven by atmospheric forcing data obtained from eddy covariance field measurements in two regions of southwestern Germany, Kraichgau (KR) and Swabian Alb (SA). KR is characterized with deep loess soils, whereas the soils in SA are shallow, clayey, and stony. The simulations series were compared with SWC data from soil moisture networks operating in the two study regions. The results demonstrate that Noah-MP matches temporal 〈θ〉 dynamics fairly well in KR, but performs poorly in SA. The best match is achieved with the van Genuchten–Mualem representation of soil hydraulic functions and site-specific rainfall, soil texture, green vegetation fraction (GVF) and leaf area index (LAI) input data. Nevertheless, most of the simulated σθ–〈θ〉 pairs are located outside the envelope of measurements and below the lower bound, which shows that the model smooths spatial SWC variability. This can be mainly attributed to missing topography and terrain information and inadequate representation of spatial variability of soil texture and hydraulic parameters, as well as the model assumption of a uniform root distribution.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0169.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maxim Poltoradnev, m.poltoradnev@uni-hohenheim.de

Abstract

The spatial variability of topsoil water content (SWC) is often expressed through the relationship between its spatial mean 〈θ〉 and standard deviation σθ. The present study tests the concept that a reasonably performing land surface model (LSM) should be able to produce σθ–〈θ〉 data pairs that fall into a polygon, spanned by the cloud of observed data and two anchor points: σθ at the permanent wilting point σθ–〈θwp〉 and σθ at saturation σθ–〈θs〉. A state-of-the-art LSM, Noah-MP, was driven by atmospheric forcing data obtained from eddy covariance field measurements in two regions of southwestern Germany, Kraichgau (KR) and Swabian Alb (SA). KR is characterized with deep loess soils, whereas the soils in SA are shallow, clayey, and stony. The simulations series were compared with SWC data from soil moisture networks operating in the two study regions. The results demonstrate that Noah-MP matches temporal 〈θ〉 dynamics fairly well in KR, but performs poorly in SA. The best match is achieved with the van Genuchten–Mualem representation of soil hydraulic functions and site-specific rainfall, soil texture, green vegetation fraction (GVF) and leaf area index (LAI) input data. Nevertheless, most of the simulated σθ–〈θ〉 pairs are located outside the envelope of measurements and below the lower bound, which shows that the model smooths spatial SWC variability. This can be mainly attributed to missing topography and terrain information and inadequate representation of spatial variability of soil texture and hydraulic parameters, as well as the model assumption of a uniform root distribution.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0169.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maxim Poltoradnev, m.poltoradnev@uni-hohenheim.de

Supplementary Materials

    • Supplemental Materials (ZIP 120.99 KB)
Save
  • Albertson, J. D., and N. Montaldo, 2003: Temporal dynamics of soil moisture variability: 1. Theoretical basis. Water Resour. Res., 39, 1275, https://doi.org/10.1029/2002WR001616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., www.fao.org/docrep/X0490E/X0490E00.htm.

  • Bauer, H. S., and Coauthors, 2016: Multi-scale WRF simulations for atmospheric process understanding and boundary layer research. Proc. Third bwHPC-Symp., Heidelberg, Germany, Universität Heidelberg, 65–69, https://doi.org/10.11588/heibooks.308.418.

    • Crossref
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55, 10911108, https://doi.org/10.1175/1520-0469(1998)055<1091:FSCASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binley, A., S. S. Hubbard, J. A. Huisman, A. Revil, D. A. Robinson, K. Singha, and L. D. Slater, 2015: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res., 51, 38373866, https://doi.org/10.1002/2015WR017016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos., 119, 2338, https://doi.org/10.1002/2013JD020792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modelling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soil. Water Resour. Res., 20, 682690, https://doi.org/10.1029/WR020i006p00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Coauthors, 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, RG2002, https://doi.org/10.1029/2011RG000372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1995: Problems in initializing soil wetness. Bull. Amer. Meteor. Soc., 76, 22342240.

  • Dirmeyer, P. A., and J. Shukla, 1994: Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res., 99, 20 86320 877, https://doi.org/10.1029/94JD01311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, https://doi.org/10.1175/JHM532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson, 2008: Field observations of soil moisture variability across scales. Water Resour. Res., 44, W01423, https://doi.org/10.1029/2006WR005804.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. M. van den Dool, D. Lohmann, and K. Mitchell, 2006: 1948–98 U.S. hydrological reanalysis by the Noah land data assimilation system. J. Climate, 19, 12141237, https://doi.org/10.1175/JCLI3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gantner, L., and N. Kalthoff, 2010: Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 471482, https://doi.org/10.1002/qj.425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayler, S., J. Ingwersen, E. Priesack, T. Wöhling, V. Wulfmeyer, and T. Streck, 2013: Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: Comparison with field data and crop model simulations. Environ. Earth Sci., 69, 415, https://doi.org/10.1007/s12665-013-2309-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayler, S., and Coauthors, 2014: Incorporating dynamic root growth enhances the performance of NOAH-MP at two contrasting winter wheat field sites. Water Resour. Res., 50, 13371356, https://doi.org/10.1002/2013WR014634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, D. C., T. J. Schmugge, T. J. Jackson, C. L. Unkrich, T. O. Keefer, R. Parry, L. B. Bach, and S. A. Am, 1994: Runoff simulation sensitivity to remotely sensed initial soil water content. Water Resour. Res., 30, 13931405, https://doi.org/10.1029/93WR03083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grayson, R. B., A. W. Western, F. H. S. Chiew, and G. Bloschl, 1997: Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resour. Res., 33, 28972908, https://doi.org/10.1029/97WR02174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauck, C., C. Barthlott, L. Krauss, and N. Kalthoff, 2011: Soil moisture variability and its influence on convective precipitation over complex terrain. Quart. J. Roy. Meteor. Soc., 137, 4256, https://doi.org/10.1002/qj.766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathman, G. C., M. Larose, M. H. Cosh, and R. Bindlish, 2009: Surface and profile soil moisture spatio-temporal analysis during an excessive rainfall period in the southern Great Plains, USA. Catena, 78, 159169, https://doi.org/10.1016/j.catena.2009.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathman, G. C., M. H. Cosh, V. Merwade, and E. Han, 2012: Multi-scale temporal stability analysis of surface and subsurface soil moisture within the upper Cedar Creek Watershed, Indiana. Catena, 95, 91103, https://doi.org/10.1016/j.catena.2012.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and S. A. Isard, 1994: A soil moisture climatology of Illinois. J. Climatol., 7, 822833, https://doi.org/10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H. Y., and S. A. Margulis, 2013: Impact of soil moisture heterogeneity length scale and gradients on daytime coupled land-cloudy boundary layer interactions. Hydrol. Processes, 27, 19882003, https://doi.org/10.1002/hyp.9351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imukova, K., J. Ingwersen, and T. Streck, 2015: Determining the spatial and temporal dynamics of the green vegetation fraction of croplands using high-resolution RapidEye satellite images. Agric. For. Meteor., 206, 113123, https://doi.org/10.1016/j.agrformet.2015.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingwersen, J., and Coauthors, 2011: Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric. For. Meteor., 151, 345355, https://doi.org/10.1016/j.agrformet.2010.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, J., T. Cornelissen, Z. Fang, H. Bogena, B. Diekkruger, S. Kollet, and S. Stisen, 2016: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment. J. Hydrol., 533, 234249, https://doi.org/10.1016/j.jhydrol.2015.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leib, B. G., J. D. Jabro, and G. R. Matthews, 2003: Field evaluation and performance comparison of soil moisture sensors. Soil Sci., 168, 396408, https://doi.org/10.1097/01.ss.0000075285.87447.86.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascaro, G., and E. R. Vivoni, 2012: Utility of coarse and downscaled soil moisture products at L-band for hydrologic modeling at the catchment scale. Geophys. Res. Lett., 39, L10403, https://doi.org/10.1029/2012GL051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, U., 2001: Growth stages of mono- and dicotyledonous plants. BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry, 158 pp.

  • Mohanty, B. P., M. H. Cosh, V. Lakshmi, and C. Montzka, 2017: Soil moisture remote sensing: State-of-the-Science. Vadose Zone J., 16, https://doi.org/10.2136/vzj2016.10.0105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morari, F., and L. Giardini, 2002: Irrigation automation with heterogeneous vegetation: The case of the Padova botanical garden. Agric. Water Manage., 55, 183201, https://doi.org/10.1016/S0378-3774(01)00192-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, https://doi.org/10.13031/2013.23153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noma, E., 2013: Package PlotRegionHighlighter, version 1.0. R package, accessed 28 April 2016, https://cran.r-project.org/web/packages/PlotRegionHighlighter/index.html.

  • Pebesma, E. J., and R. S. Bivand, 2005: Classes and methods for spatial data in R. R News, No. 5 (2), R Foundation, Vienna, Austria, 9–13, https://cran.r-project.org/doc/Rnews/Rnews_2005-2.pdf.

  • Poltoradnev, M., J. Ingwersen, and T. Streck, 2015: Calibration and application of Aquaflex TDT soil water probes to measure the soil water dynamics of agricultural topsoil in southwest Germany. J. Irrig. Drain. Eng., 141, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poltoradnev, M., J. Ingwersen, and T. Streck, 2016: Spatial and temporal variability of soil water content in two regions of southwest Germany during a three-year observation period. Vadose Zone J., 15, https://doi.org/10.2136/vzj2015.11.0143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, W., H. R. Bogena, J. A. Huisman, and H. Vereecken, 2013: Calibration of a novel low-cost soil water content sensor based on a ring oscillator. Vadose Zone J., 12, https://doi.org/10.2136/vzj2012.0139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roger, S., R. S. Bivand, E. J. Pebesma, and V. Gomez-Rubio, 2013: Applied Spatial Data Analysis with R. 2nd ed. Springer, 405 pp.

    • Crossref
    • Export Citation
  • Rosenbaum, U., J. A. Huisman, A. Weuthen, H. Vereecken, and H. R. Bogena, 2010: Sensor-to-sensor variability of the ECH2O EC-5, TE, and 5TE sensors in dielectric liquids. Vadose Zone J., 9, 181186, https://doi.org/10.2136/vzj2009.0036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., F. J. Leij, and M. Th. van Genuchten, 2001: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163176, https://doi.org/10.1016/S0022-1694(01)00466-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheffer, F., and P. Schachtschabel, 2008: Lehrbuch der Bodenkunde. 15th ed. Spektrum Akademischer Verlag, 593 pp.

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šimůnek, J., M. Th. van Genuchten, and M. Šejna, 2006: The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Tech. Manual, 213 pp., https://www.pc-progress.com/downloads/Pgm_Hydrus3D/HYDRUS3D%20Technical%20Manual.pdf.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Soil Survey Division Staff, 1993: Soil Survey Manual. U.S. Department of Agriculture, 375 pp.

  • van Genuchten, M. Th., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898, https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., J. C. Rodríguez, and C. J. Watts, 2010: On the spatiotemporal variability of soil moisture and evapotranspiration in a mountainous basin within the North American monsoon region. Water Resour. Res., 46, W02509, https://doi.org/10.1029/2009WR008240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Shao, Z. Liu, and R. Horton, 2013: Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China. J. Hydrol., 487, 1323, https://doi.org/10.1016/j.jhydrol.2013.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiekenkamp, I., J. A. Huisman, H. R. Bogena, H. S. Lin, and H. Vereecken, 2016: Spatial and temporal occurrence of preferential flow in a forested headwater catchment. J. Hydrol., 534, 139149, https://doi.org/10.1016/j.jhydrol.2015.12.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wizemann, H.-D., J. Ingwersen, P. Högy, K. Warrach-Sagi, T. Streck, and V. Wulfmeyer, 2015: Three year observations of water vapor and energy fluxes over agricultural crops in two regional climates of southwest Germany. Meteor. Z., 24, 3959, https://doi.org/10.1127/metz/2014/0618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wöhling, T., N. Schütze, B. Heinrich, J. Šimůnek, and G. F. Barkle, 2009: Three-dimensional modeling of multiple automated equilibrium tension lysimeters to measure vadose zone fluxes. Vadose Zone J., 8, 10511063, https://doi.org/10.2136/vzj2009.0040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wraith, J. M., D. A. Robinson, S. B. Jones, and D. S. Long, 2005: Spatially characterizing apparent electrical conductivity and water content of surface soils with time domain reflectometry. Comput. Electron. Agric., 46, 239261, https://doi.org/10.1016/j.compag.2004.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WRB, 2006: World reference base for soil resources 206. World Soil Resources Rep. 103, 128 pp., http://www.fao.org/tempref/docrep/fao/009/a0510e/a0510e00.pdf.

  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T., R. T. Wetherald, and S. Manabe, 1984: The effect of soil moisture on the short-term climate and hydrology change—A numerical experiment. Mon. Wea. Rev., 112, 474490, https://doi.org/10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 700 143 5
PDF Downloads 539 36 1