• Allen, E. B., T. M. Rittenour, R. J. DeRose, M. F. Bekker, R. Kjelgren, and B. M. Buckley, 2013: A tree-ring based reconstruction of Logan River streamflow, northern Utah. Water Resour. Res., 49, 85798588, https://doi.org/10.1002/2013WR014273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barandiaran, D., 2016: Investigation into regional climate variability using tree-ring reconstruction, climate diagnostics and prediction. Ph.D. thesis, Utah State University, 95 pp., http://digitalcommons.usu.edu/etd/5024/.

  • Barnett, T. P., and D. W. Pierce, 2008: When will Lake Mead go dry? Water Resour. Res., 44, W03201, https://doi.org/10.1029/2007WR006704.

  • Barnett, T. P., and D. W. Pierce, 2009: Sustainable water deliveries from the Colorado River in a changing climate. Proc. Natl. Acad. Sci. USA, 106, 73347338, https://doi.org/10.1073/pnas.0812762106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedford, D., 2009: The Great Salt Lake: America’s Aral Sea? Environment, 51 (5), 821.

  • Bekker, M. F., R. J. DeRose, B. M. Buckley, R. K. Kjelgren, and N. S. Gill, 2014: A 576-year Weber River streamflow reconstruction from tree rings for water resource risk assessment in the Wasatch Front, Utah. J. Amer. Water Resour. Assoc., 50, 13381348, https://doi.org/10.1111/jawr.12191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BOR, 2013: Colorado River Basin Water Supply and Demand Study. Bureau of Reclamation, http://www.usbr.gov/lc/region/programs/crbstudy/finalreport/index.html.

  • Castle, S. L., B. F. Thomas, J. T. Reager, M. Rodell, S. C. Swenson, and J. S. Famiglietti, 2014: Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett., 41, 59045911, https://doi.org/10.1002/2014GL061055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., A. W. Wood, N. Voisin, D. P. Lettenmaier, and R. N. Palmer, 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, https://doi.org/10.1023/B:CLIM.0000013684.13621.1f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeRose, R., W. Wang, and J. D. Shaw, 2012: Investigating forest inventory and analysis-collected tree-ring data from Utah as a proxy for historical climate. Wasatch Dendroclimatology Research Paper 6, https://digitalcommons.usu.edu/wadr/6.

    • Search Google Scholar
    • Export Citation
  • DeRose, R., S.-Y. Wang, and J. D. Shaw, 2013: Feasibility of high-density climate reconstruction based on Forest Inventory and Analysis (FIA) collected tree-ring data. J. Hydrometeor., 14, 375381, https://doi.org/10.1175/JHM-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeRose, R., S.-Y. Wang, B. M. Buckley, and M. F. Bekker, 2014: Tree-ring reconstruction of the level of Great Salt Lake, USA. Holocene, 24, 8058013, https://doi.org/10.1177/0959683614530441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeRose, R., M. Bekker, S.-Y. Wang, B. Buckley, R. Kjelgren, T. Bardsley, T. Rittenour, and E. Allen, 2015: A millennium-length reconstruction of Bear River stream flow, Utah. J. Hydrol., 529, 524534, https://doi.org/10.1016/j.jhydrol.2015.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, N. Schneider, J. Furtado, B. Anderson, and M. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 94409448, https://doi.org/10.1002/2015GL066281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, K., and C. Shen, 2017: Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US. Water Resour. Res., 53, 80648083, https://doi.org/10.1002/2016WR020283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, S., and G. J. McCabe, 2010: Predicting regime shifts in flow of the Colorado River. Geophys. Res. Lett., 37, L20706, https://doi.org/10.1029/2010GL044513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., O.-Y. Chung, S.-Y. Wang, and P. Kokoszka, 2011: Incorporation of Pacific SSTs in a time series model towards a longer-term forecast for the Great Salt Lake elevation. J. Hydrometeor., 12, 474480, https://doi.org/10.1175/2010JHM1352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., O.-Y. Chung, S. Y. Simon Wang, R. J. DeRose, and Y. Sun, 2015: Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level. J. Hydrol., 529, 962968, https://doi.org/10.1016/j.jhydrol.2015.08.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. T., S. T. Jackson, and J. L. Betancourt, 2004: Tree-ring based reconstructions of interannual to decadal-scale precipitation variability for northeastern Utah. J. Amer. Water Resour. Assoc., 40, 947960, https://doi.org/10.1111/j.1752-1688.2004.tb01058.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakala, K., 2014: Climate forcings on groundwater variations in Utah and the Great Basin. M.S. thesis, Department of Plants, Soils, and Climate, Utah State University, 34 pp., https://digitalcommons.usu.edu/etd/3867/.

  • Herweijer, C., R. Seager, E. R. Cook, and J. Emile-Geay, 2007: North American droughts of the last millennium from a gridded network of tree-ring data. J. Climate, 20, 13531376, https://doi.org/10.1175/JCLI4042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., and J. A. Dracup, 2003: ENSO and PDO effects on hydroclimatic variations of the upper Colorado River basin. J. Hydrometeor., 4, 523, https://doi.org/10.1175/1525-7541(2003)004<0005:EAPEOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., T. C. Piechota, and J. A. Dracup, 2000: Alternative principal components regression procedures for dendrohydrologic reconstructions. Water Resour. Res., 36, 32413249, https://doi.org/10.1029/2000WR900097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and Y.-L. Chen, 2011: Decadal to bi-decadal rainfall variation in the western Pacific: A footprint of South Pacific decadal variability? Geophys. Res. Lett., 38, L03703, https://doi.org/10.1029/2010GL046278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, https://doi.org/10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. W., T. C. Piechota, O. A. Aziz, and G. A. Tootle, 2011: Basis for extending long-term streamflow forecasts in the Colorado River basin. J. Hydrol. Eng., 16, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F., and S. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M., U. Lall, and B. Saltzman, 1995: Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake. Geophys. Res. Lett., 22, 937940, https://doi.org/10.1029/95GL00704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masbruch, M. D., C. A. Rumsey, S. Gangopadhyay, D. D. Susong, and T. Pruitt, 2016: Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management. Water Resour. Res., 52, 78197836, https://doi.org/10.1002/2016WR019060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2007: Warming may create substantial water supply shortages in the Colorado River basin. Geophys. Res. Lett., 34, L22708, https://doi.org/10.1029/2007GL031764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meko, D. M., C. A. Woodhouse, C. A. Baisan, T. Knight, J. J. Lukas, M. K. Hughes, and M. W. Salzer, 2007: Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett., 34, L10705, https://doi.org/10.1029/2007GL029988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. P., S. G. Buto, D. D. Susong, and C. A. Rumsey, 2016: The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resour. Res., 52, 35473562, https://doi.org/10.1002/2015WR017963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammed, I. N., and D. G. Tarboton, 2012: An examination of the sensitivity of the Great Salt Lake to changes in inputs. Water Resour. Res., 48, W11511, https://doi.org/10.1029/2012WR011908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y.-I., and U. Lall, 1996: Atmospheric flow indices and interannual Great Salt Lake variability. J. Hydrol. Eng., 1, 5562, https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(55).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., K. Nowak, J. Prairie, M. Hoerling, B. Harding, J. Barsugli, A. Ray, and B. Udall, 2009: Water supply risk on the Colorado River: Can management mitigate? Water Resour. Res., 45, W08201, https://doi.org/10.1029/2008WR007652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., and Coauthors, 2015: Hydrologic implications of GRACE satellite data in the Colorado River basin. Water Resour. Res., 51, 98919903, https://doi.org/10.1002/2015WR018090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K., C. Strong, and S.-Y. Wang, 2015: Connectivity between historical Great Basin precipitation and Pacific Ocean variability: A CMIP5 model evaluation. J. Climate, 28, 60966112, https://doi.org/10.1175/JCLI-D-14-00488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockton, C. W., and G. Jacoby Jr., 1976: Long-term surface-water supply and streamflow trends in the upper Colorado River basin. Lake Powell Research Project Bulletin 18, 70 pp., http://wwa.colorado.edu/resources/colorado-river/docs/climate/lake%20powell%20research%20project.pdf.

  • Thomas, H. E., 1963: General summary of effects of the drought in the Southwest. Geological Survey Professional Paper 372-H, 22 pp., https://pubs.usgs.gov/pp/0372h/report.pdf.

  • Tourre, Y., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophys. Res. Lett., 28, 20692072, https://doi.org/10.1029/2000GL012780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., R. R. Gillies, J. Jin, and L. E. Hipps, 2009: Recent rainfall cycle in the Intermountain Region as a quadrature amplitude modulation from the Pacific decadal oscillation. Geophys. Res. Lett., 36, L02705, https://doi.org/10.1029/2008GL036329.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., R. R. Gillies, J. Jin, and L. E. Hipps, 2010: Coherence between the Great Salt Lake level and the Pacific quasi-decadal oscillation. J. Climate, 23, 21612177, https://doi.org/10.1175/2009JCLI2979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., R. R. Gillies, L. E. Hipps, and J. Jin, 2011: A transition-phase teleconnection of the Pacific quasi-decadal oscillation. Climate Dyn., 36, 681693, https://doi.org/10.1007/s00382-009-0722-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., R. R. Gillies, and T. Reichler, 2012: Multi-decadal drought cycles in the Great Basin recorded by the Great Salt Lake: Modulation from a transition-phase teleconnection. J. Climate, 25, 17111721, https://doi.org/10.1175/2011JCLI4225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., and Z. Liu, 2008a: Non-linear alignment of El Niño to the 11-yr solar cycle. Geophys. Res. Lett., 35, L19607, https://doi.org/10.1029/2008GL034831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., and Z. Liu, 2008b: Resonant excitation of the quasi-decadal oscillation by the 11-year signal in the Sun’s irradiance. J. Geophys. Res., 113, C01002, https://doi.org/10.1029/2006JC004057.

    • Search Google Scholar
    • Export Citation
  • Wolock, D., 2003: Base-flow index grid for the conterminous United States. USGS Open-File Rep. 2003-263, https://pubs.er.usgs.gov/publication/ofr03263.

  • Woodhouse, C. A., S. T. Gray, and D. M. Meko, 2006: Updated streamflow reconstructions for the Upper Colorado River basin. Water Resour. Res., 42, W05415, https://doi.org/10.1029/2005WR004455.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 12
PDF Downloads 12 12 1

Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake

View More View Less
  • 1 Utah Climate Center, and Department of Plants, Utah State University, Logan, Utah
  • 2 Utah Climate Center, Utah State University, Logan, Utah
  • 3 Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The 2013 federal Colorado River Basin Water Supply and Demand Study projected the water imbalance between future supply and demand to increase. The Colorado water supply (WS) exemplifies a pronounced quasi-decadal oscillation (QDO) of 10–20 years throughout its historical record; however, this QDO feature is unaccounted for in the climate models used to project the future WS. Adjacent to the Colorado River, the large watershed of the Great Salt Lake (GSL) in Utah records the hydrologic QDO signal in its water surface, leading previous studies to explore the cause of decadal fluctuations in the lake elevation and assess predictability. This study reports a remarkable coherence between the Colorado WS and the GSL elevation at the 10–20-yr time scale. Analysis of precipitation and terrestrial water storage anomalies suggests a cross-basin connection in the climate and hydrometeorological variations of the Colorado WS and the GSL. The 160-yr-long and well-kept GSL elevation record makes it an effective indicator for the Colorado WS.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S.-Y. Simon Wang, simon.wang@usu.edu

Abstract

The 2013 federal Colorado River Basin Water Supply and Demand Study projected the water imbalance between future supply and demand to increase. The Colorado water supply (WS) exemplifies a pronounced quasi-decadal oscillation (QDO) of 10–20 years throughout its historical record; however, this QDO feature is unaccounted for in the climate models used to project the future WS. Adjacent to the Colorado River, the large watershed of the Great Salt Lake (GSL) in Utah records the hydrologic QDO signal in its water surface, leading previous studies to explore the cause of decadal fluctuations in the lake elevation and assess predictability. This study reports a remarkable coherence between the Colorado WS and the GSL elevation at the 10–20-yr time scale. Analysis of precipitation and terrestrial water storage anomalies suggests a cross-basin connection in the climate and hydrometeorological variations of the Colorado WS and the GSL. The 160-yr-long and well-kept GSL elevation record makes it an effective indicator for the Colorado WS.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S.-Y. Simon Wang, simon.wang@usu.edu
Save