• Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific Basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. N. Maybourn, C. M. Peirano, J. E. Tate, P. J. Brown, J. D. Hoey, and B. R. Smith, 2013: Drought and associated impacts in the Great Plains of the United States—A review. Int. J. Geosci., 4, 7281, https://doi.org/10.4236/ijg.2013.46A2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., R. R. McCrary, A. Seth, and L. O. Mearns, 2017: A mechanistically credible, poleward shift in warm season precipitation projected for the U.S. southern Great Plains? J. Climate, 30, 82758298, https://doi.org/10.1175/JCLI-D-16-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J., K. Christian, and J. B. Basara, 2015: Drought and pluvial dipole events within the great plains of the United States. J. Appl. Meteor. Climatol., 54, 18861898, https://doi.org/10.1175/JAMC-D-15-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cook, B. I., R. L. Miller, and R. Seager, 2008: Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought. Geophys. Res. Lett., 35, L08710, https://doi.org/10.1029/2008GL033486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. Seager, and R. L. Miller, 2011: On the causes and dynamics of the early twentieth-century North American pluvial. J. Climate, 24, 50435060, https://doi.org/10.1175/2011JCLI4201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2000: High quality spatial climate data sets for the United States and beyond. Trans. ASAE, 43, 19571962, https://doi.org/10.13031/2013.3101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dore, M. H. I., 2005: Climatic change and changes in global precipitation patterns: What do we know? Environ. Int., 31, 11671181, https://doi.org/10.1016/j.envint.2005.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. L., D. P. Billesbach, J. A. Berry, W. J. Riley, and M. S. Torn, 2007: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains. Earth Interact., 11, https://doi.org/10.1175/EI231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P. X., J. B. Basara, and X. Xiao, 2017: Long-term analysis of the asynchronicity between temperature and precipitation maxima in the United States Great Plains. Int. J. Climatol., 37, 39193933, https://doi.org/10.1002/joc.4966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., and J. E. Martin, 2017: Synoptic features associated with temporally coherent modes of variability of the North Pacific jet stream. J. Climate, 30, 3954, https://doi.org/10.1175/JCLI-D-15-0833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and G. Faure, 2008: Composite predictor maps of extraordinary weather events in the Sacramento, California, region. Wea. Forecasting, 23, 313335, https://doi.org/10.1175/2007WAF2006055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., M. Ting, Z. Wen, D. E. Lee, Y. Guo, M. Ting, Z. Wen, and D. E. Lee, 2017: Distinct patterns of tropical Pacific SST anomaly and their impacts on North American climate. J. Climate, 30, 52215241, https://doi.org/10.1175/JCLI-D-16-0488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • llston, B. G., J. B. Basara, and K. C. Crawford, 2004: Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol., 24, 18831896, https://doi.org/10.1002/joc.1077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., B. Hanson, and D. J. Leathers, 2008: A teleconnection between forced Great Plains snow cover and European winter climate. J. Climate, 21, 24662483, https://doi.org/10.1175/2007JCLI1672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646, https://doi.org/10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. Nogues-Paegle, and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, https://doi.org/10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612778, https://doi.org/10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., and Coauthors, 2005: Climatological features of cutoff low systems in the Northern Hemisphere. J. Climate, 18, 30853103, https://doi.org/10.1175/JCLI3386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Lenic, E. A., D. A. Unger, M. S. Halpert, and K. S. Pelman, 2008: Developments in operational long-range climate prediction at CPC. Wea. Forecasting, 23, 496515, https://doi.org/10.1175/2007WAF2007042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Pal, J. S., and E. A. B. Eltahir, 2002: Teleconnections of soil moisture and rainfall during the 1993 Midwest summer flood. Geophys. Res. Lett., 29, 1865, https://doi.org/10.1029/2002GL014815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, N., A. R. Bell, E. R. Cook, U. Lall, N. Devineni, R. Seager, K. Eggleston, and K. P. Vranes, 2013: Is an epic pluvial masking the water insecurity of the greater New York City region? J. Climate, 26, 13391354, https://doi.org/10.1175/JCLI-D-11-00723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., 2015: An Introduction to the Global Circulation of the Atmosphere. Princeton University Press, 456 pp.

  • Rosenzweig, C., A. Iglesias, and X. Yang, 2001: Climate change and extreme weather events: Implications for food production, plant diseases and pests. Global Change Hum. Health, 2, 90104, https://doi.org/10.1023/A:1015086831467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830, https://doi.org/10.1175/JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long term drought in the U.S. Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21, 802816, https://doi.org/10.1175/2007JCLI1741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. P. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527, https://doi.org/10.1256/qj.04.96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, https://doi.org/10.1175/JHM-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., Y. Kwon, T. M. Joyce, and C. C. Ummenhofer, 2017: On the predominant nonlinear response of the extratropical atmosphere to meridional shifts of the Gulf Stream. J. Climate, 30, 96799702, https://doi.org/10.1175/JCLI-D-16-0707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and G. W. Branstator, 1992: Issues in establishing causes of the 1988 drought over North America. J. Climate, 5, 159172, https://doi.org/10.1175/1520-0442(1992)005<0159:IIECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, https://doi.org/10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S., S. Baxter, and K. Harnos, 2016: Regional changes in the interannual variability of warm season precipitation. J. Climate, 29, 51575173, https://doi.org/10.1175/JCLI-D-14-00803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., A. Gershunov, T. J. Brown, D. R. Cayan, and M. D. Dettinger, 2003: Climate and wildfire in the western United States. Bull. Amer. Meteor. Soc., 84, 595604, https://doi.org/10.1175/BAMS-84-5-595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western US forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmi, O. V., and D. A. Wilhite, 2002: Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards, 25, 3758, https://doi.org/10.1023/A:1013388814894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Droughts: A Global Assessment, D. A. Wilhite, Ed., Routledge, 3–18.

  • Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses: Climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571583, https://doi.org/10.1175/BAMS-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. Ding, D. Zheng, and Q. Li, 2007: Depiction of the variations of Great Plains precipitation and its relationship with tropical central-eastern Pacific SST. J. Appl. Meteor. Climatol, 46, 136153, https://doi.org/10.1175/JAM2455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, D., M. L. Roderick, G. Leech, F. Sun, and Y. Huang, 2014: The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett., 41, 78917897, https://doi.org/10.1002/2014GL062039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. Black, 2017: A dynamical and statistical characterization of U.S. extreme precipitation events and their associated large-scale meteorological patterns. J. Climate, 30, 13071326, https://doi.org/10.1175/JCLI-D-15-0910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 11
PDF Downloads 42 42 4

Primary Atmospheric Drivers of Pluvial Years in the United States Great Plains

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 2 School of Meteorology, and Oklahoma Climatological Survey, University of Oklahoma, Norman, Oklahoma
  • 3 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 4 Department of Microbiology and Plant Biology, and Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Precipitation variability has increased in recent decades across the Great Plains (GP) of the United States. Drought and its associated drivers have been studied in the GP region; however, periods of excessive precipitation (pluvials) at seasonal to interannual scales have received less attention. This study narrows this knowledge gap with the overall goal of understanding GP precipitation variability during pluvial periods. Through composites of relevant atmospheric variables from the ECMWF twentieth-century reanalysis (ERA-20C), key differences between southern Great Plains (SGP) and northern Great Plains (NGP) pluvial periods are highlighted. The SGP pluvial pattern shows an area of negative height anomalies over the southwestern United States with wind anomalies consistent with frequent synoptic wave passages along a southward-shifted North Pacific jet. The NGP pattern during pluvial periods, by contrast, depicts anomalously low heights in the northwestern United States and an anomalously extended Pacific jet. Analysis of daily heavy precipitation events reveals the key drivers for these pluvial events, namely, an east–west height gradient and associated stronger poleward moisture fluxes. Therefore, the results show that pluvial years over the GP are likely driven by synoptic-scale processes rather than by anomalous seasonal precipitation driven by longer time-scale features. Overall, the results present a possible pathway to predicting the occurrence of pluvial years over the GP and understanding the causes of GP precipitation variability, potentially mitigating the threats of water scarcity and excesses for the public and agricultural sectors.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Flanagan, pxf11@ou.edu

Abstract

Precipitation variability has increased in recent decades across the Great Plains (GP) of the United States. Drought and its associated drivers have been studied in the GP region; however, periods of excessive precipitation (pluvials) at seasonal to interannual scales have received less attention. This study narrows this knowledge gap with the overall goal of understanding GP precipitation variability during pluvial periods. Through composites of relevant atmospheric variables from the ECMWF twentieth-century reanalysis (ERA-20C), key differences between southern Great Plains (SGP) and northern Great Plains (NGP) pluvial periods are highlighted. The SGP pluvial pattern shows an area of negative height anomalies over the southwestern United States with wind anomalies consistent with frequent synoptic wave passages along a southward-shifted North Pacific jet. The NGP pattern during pluvial periods, by contrast, depicts anomalously low heights in the northwestern United States and an anomalously extended Pacific jet. Analysis of daily heavy precipitation events reveals the key drivers for these pluvial events, namely, an east–west height gradient and associated stronger poleward moisture fluxes. Therefore, the results show that pluvial years over the GP are likely driven by synoptic-scale processes rather than by anomalous seasonal precipitation driven by longer time-scale features. Overall, the results present a possible pathway to predicting the occurrence of pluvial years over the GP and understanding the causes of GP precipitation variability, potentially mitigating the threats of water scarcity and excesses for the public and agricultural sectors.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Flanagan, pxf11@ou.edu
Save