• Bell, J., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An overview. J. Climate, 17, 187208, https://doi.org/10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 1: Experiment description and summary intercomparison. Global Planet. Change, 38, 130, https://doi.org/10.1016/S0921-8181(03)00003-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, and M. H. Savoie, 2012: EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geo-Inf., 1, 3245, https://doi.org/10.3390/ijgi1010032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., S. Bélair, and B. Bilodeau, 2015: The Canadian Land Data Assimilation System (CaLDAS): Description and synthetic evaluation study. J. Hydrometeor., 16, 12931314, https://doi.org/10.1175/JHM-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., and Coauthors, 2016a: Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens., 54, 49945007, https://doi.org/10.1109/TGRS.2016.2561938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., E. G. Njoku, and A. Colliander, 2016b: SMAP L1C radiometer half-orbit 36 km EASE-grid brightness temperatures, version 3. National Snow and Ice Data Center Distributed Active Archive Center, accessed 5 April 2017, https://doi.org/10.5067/E51BSP6V3KP7.

    • Crossref
    • Export Citation
  • Chan, S. K., and Coauthors, 2018: Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ., 204, 931941, https://doi.org/10.1016/j.rse.2017.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbari, C., and M. Mancini, 2014: Calibration and validation of a distributed energy–water balance model using satellite data of land surface temperature and ground discharge measurements. J. Hydrometeor., 15, 376392, https://doi.org/10.1175/JHM-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., E. F. Wood, and M. Pan, 2003: Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J. Geophys. Res., 108, 4725, https://doi.org/10.1029/2002JD003292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., and R. H. Reichle, 2016a: Global assimilation of multiangle and multipolarization SMOS brightness temperature observations into the GEOS-5 Catchment land surface model for soil moisture estimation. J. Hydrometeor., 17, 669691, https://doi.org/10.1175/JHM-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., and R. H. Reichle, 2016b: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol. Earth Syst. Sci., 20, 48954911, https://doi.org/10.5194/hess-20-4895-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., R. H. Reichle, and V. R. N. Pauwels, 2013: Global calibration of the GEOS-5 L-band microwave radiative transfer model over nonfrozen land using SMOS observations. J. Hydrometeor., 14, 765785, https://doi.org/10.1175/JHM-D-12-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, 2013: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quart. J. Roy. Meteor. Soc., 139, 11991213, https://doi.org/10.1002/qj.2023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., R. H. Reichle, G. J. M. De Lannoy, and Q. Liu, 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, https://doi.org/10.1029/2011GL050655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., K. Scipal, P. de Rosnay, G. Balsamo, E. Andersson, P. Bougeault, and P. Viterbo, 2009: Towards a Kalman filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System. Geophys. Res. Lett., 36, L10401, https://doi.org/10.1029/2009GL037716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., R. D. Koster, M. J. Suarez, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res., 105, 24 82324 838, https://doi.org/10.1029/2000JD900328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010a: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow, 2010b: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840, https://doi.org/10.1175/2010JHM1223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and E. E. Small, 2010: A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models. Water Resour. Res., 46, W06520, https://doi.org/10.1029/2009WR008203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2016: Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ., 180, 4063, https://doi.org/10.1016/j.rse.2016.02.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and S. P. P. Mahanama, 2012: Land surface controls on hydroclimatic means and variability. J. Hydrometeor., 13, 16041620, https://doi.org/10.1175/JHM-D-12-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, C. D. Peters-Lidard, R. D. Koster, X. Zhan, W. T. Crow, J. B. Eylander, and P. R. Houser, 2008: A land surface data assimilation framework using the Land Information System: Description and applications. Adv. Water Resour., 31, 14191432, https://doi.org/10.1016/j.advwatres.2008.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, R. D. Koster, W. T. Crow, and C. D. Peters-Lidard, 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 15341547, https://doi.org/10.1175/2009JHM1134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski, 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 44634478, https://doi.org/10.5194/hess-19-4463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., W. Wang, B. Peng, R. Akbar, D. J. Gianotti, H. Lu, M. Pan, and D. Entekhabi, 2017: Global characterization of surface soil moisture drydowns. Geophys. Res. Lett., 44, 36823690, https://doi.org/10.1002/2017GL072819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish. 2016: SMAP L2 radiometer half-orbit 36 km EASE-grid soil moisture, version 4. National Snow and Ice Data Center Distributed Active Archive Center, accessed October 2016, https://doi.org/10.5067/XPJTJT812XFY.

    • Crossref
    • Export Citation
  • Piepmeier, J. R., and Coauthors, 2014: Radio-frequency interference mitigation for the Soil Moisture Active Passive microwave radiometer. IEEE Trans. Geosci. Remote Sens., 52, 761775, https://doi.org/10.1109/TGRS.2013.2281266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepmeier, J. R., and Coauthors, 2017: SMAP L-band microwave radiometer: Instrument design and first year on orbit. IEEE Trans. Geosci. Remote Sens., 55, 19541966, https://doi.org/10.1109/TGRS.2016.2631978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2008: Data assimilation methods in the Earth sciences. Adv. Water Resour., 31, 14111418, https://doi.org/10.1016/j.advwatres.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114, https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, https://doi.org/10.1175/JCLI-D-10-05033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Coauthors, 2017a: Assessment of the SMAP level-4 surface and root-zone soil moisture product using in situ measurements. J. Hydrometeor., 18, 26212645, https://doi.org/10.1175/JHM-D-17-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Coauthors, 2017b: Global assessment of the SMAP level-4 surface and root-zone soil moisture product using assimilation diagnostics. J. Hydrometeor., 18, 32173237, https://doi.org/10.1175/JHM-D-17-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. Mahanama, R. D. Koster, and G. J. De Lannoy, 2017c: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 29372960, https://doi.org/10.1175/JCLI-D-16-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., and Coauthors, 2016: SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophys. Res. Lett., 43, 80688075, https://doi.org/10.1002/2016GL069946.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 154 33
PDF Downloads 126 126 20

Improved Hydrological Simulation Using SMAP Data: Relative Impacts of Model Calibration and Data Assimilation

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland
  • 2 Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland
  • 3 Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

The assimilation of remotely sensed soil moisture information into a land surface model has been shown in past studies to contribute accuracy to the simulated hydrological variables. Remotely sensed data, however, can also be used to improve the model itself through the calibration of the model’s parameters, and this can also increase the accuracy of model products. Here, data provided by the Soil Moisture Active Passive (SMAP) satellite mission are applied to the land surface component of the NASA GEOS Earth system model using both data assimilation and model calibration in order to quantify the relative degrees to which each strategy improves the estimation of near-surface soil moisture and streamflow. The two approaches show significant complementarity in their ability to extract useful information from the SMAP data record. Data assimilation reduces the ubRMSE (the RMSE after removing the long-term bias) of soil moisture estimates and improves the timing of streamflow variations, whereas model calibration reduces the model biases in both soil moisture and streamflow. While both approaches lead to an improved timing of simulated soil moisture, these contributions are largely independent; joint use of both approaches provides the highest soil moisture simulation accuracy.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Randal Koster, randal.d.koster@nasa.gov

Abstract

The assimilation of remotely sensed soil moisture information into a land surface model has been shown in past studies to contribute accuracy to the simulated hydrological variables. Remotely sensed data, however, can also be used to improve the model itself through the calibration of the model’s parameters, and this can also increase the accuracy of model products. Here, data provided by the Soil Moisture Active Passive (SMAP) satellite mission are applied to the land surface component of the NASA GEOS Earth system model using both data assimilation and model calibration in order to quantify the relative degrees to which each strategy improves the estimation of near-surface soil moisture and streamflow. The two approaches show significant complementarity in their ability to extract useful information from the SMAP data record. Data assimilation reduces the ubRMSE (the RMSE after removing the long-term bias) of soil moisture estimates and improves the timing of streamflow variations, whereas model calibration reduces the model biases in both soil moisture and streamflow. While both approaches lead to an improved timing of simulated soil moisture, these contributions are largely independent; joint use of both approaches provides the highest soil moisture simulation accuracy.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Randal Koster, randal.d.koster@nasa.gov
Save