• Adam, J. C., E. A. Clark, D. P. Lettenmaier, and E. F. Wood, 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, https://doi.org/10.1175/JCLI3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aizen, V., E. Aizen, and J. Melack, 1995: Climate, snow cover, glaciers, and runoff in the Tien Shan, central Asia. J. Amer. Water Resour. Assoc., 31, 11131129, https://doi.org/10.1111/j.1752-1688.1995.tb03426.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 2008: Mountain Weather and Climate. 3rd ed., Cambridge University Press, 532 pp.

    • Crossref
    • Export Citation
  • Beniston, M., 2006: Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 316, https://doi.org/10.1007/s10750-005-1802-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beume, N., B. Naujoks, and M. Emmerich, 2007: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res., 181, 16531669, https://doi.org/10.1016/j.ejor.2006.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhner, J., 2006: General climatic controls and topoclimatic variations in central and high Asia. Boreas, 35, 279295, https://doi.org/10.1080/03009480500456073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolch, T., 2017: Hydrology: Asian glaciers are a reliable water source. Nature, 545, 161162, https://doi.org/10.1038/545161a.

  • Bolch, T., and Coauthors, 2012: The state and fate of Himalayan glaciers. Science, 336, 310314, https://doi.org/10.1126/science.1215828.

  • Bolch, T., T. Pieczonka, K. Mukherjee, and J. Shea, 2017: Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 11, 531539, https://doi.org/10.5194/tc-11-531-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2006: Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037.

    • Search Google Scholar
    • Export Citation
  • Brun, F., E. Berthier, P. Wagnon, A. Kääb, and D. Treichler, 2017: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10, 668673, https://doi.org/10.1038/ngeo2999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changchun, X., C. Yaning, L. Weihong, C. Yapeng, and G. Hongtao, 2008: Potential impact of climate change on snow cover area in the Tarim River basin. Environ. Geol., 53, 14651474, https://doi.org/10.1007/s00254-007-0755-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Takeuchi, C. Xu, Y. Chen, and Z. Xu, 2006: Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Processes, 20, 22072216, https://doi.org/10.1002/hyp.6200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, G. K. C., A. H. Jarosch, F. S. Anslow, V. Radić, and B. Menounos, 2015: Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci., 8, 372377, https://doi.org/10.1038/ngeo2407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Jong, C., M. Mundelius, and K. Migała, 2005: Comparison of evapotranspiration and condensation measurements between the Giant Mountains and the Alps. Climate and Hydrology in Mountain Areas, C. de Jong, D. Collins, and R. Ranzi, Eds., John Wiley & Sons, 161–183, https://doi.org/10.1002/0470858249.ch12.

    • Crossref
    • Export Citation
  • Duethmann, D., J. Zimmer, A. Gafurov, A. Güntner, D. Kriegel, B. Merz, and S. Vorogushyn, 2013: Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrol. Earth Syst. Sci., 17, 24152434, https://doi.org/10.5194/hess-17-2415-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duethmann, D., J. Peters, T. Blume, S. Vorogushyn, and A. Güntner, 2014: The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resour. Res., 50, 20022021, https://doi.org/10.1002/2013WR014382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duethmann, D., and Coauthors, 2015: Attribution of streamflow trends in snow- and glacier melt dominated catchments of the Tarim River, central Asia. Water Resour. Res., 51, 47274750, https://doi.org/10.1002/2014WR016716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyurgerov, M. B., 2010: Reanalysis of Glacier Changes: From the IGY to the IPY, 1960–2008. Mater. Glyatsiologicheskikh Issledovanij, 108, 5116.

    • Search Google Scholar
    • Export Citation
  • Emmerich, M., N. Beume, and B. Naujoks, 2005: An EMO algorithm using the hypervolume measure as selection criterion. Evolutionary Multi-Criterion Optimization, C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, Eds., Lecture Notes in Computer Science, Vol 3410, Springer, 62–76, https://doi.org/10.1007/978-3-540-31880-4_5.

    • Crossref
    • Export Citation
  • Fan, Y., Y. Chen, W. Li, H. Wang, and X. Li, 2011: Impacts of temperature and precipitation on runoff in the Tarim River during the past 50 years. J. Arid Land, 3, 220230, https://doi.org/10.3724/SP.J.1227.2011.00220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farinotti, D., L. Longuevergne, G. Moholdt, D. Duethmann, T. Mölg, T. Bolch, S. Vorogushyn, and A. Güntner, 2015: Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci., 8, 716722, https://doi.org/10.1038/ngeo2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feike, T., Y. Mamitimin, L. Li, and R. Doluschitz, 2015: Development of agricultural land and water use and its driving forces along the Aksu and Tarim River, P.R. China. Environ. Earth Sci., 73, 517531, https://doi.org/10.1007/s12665-014-3108-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., B. L. Barnhart, J. H. Knouft, I. T. Stewart, E. P. Maurer, S. L. Letsinger, and G. W. Whittaker, 2014: Climate change and stream temperature projections in the Columbia River basin: Habitat implications of spatial variation in hydrologic drivers. Hydrol. Earth Syst. Sci., 18, 48974912, https://doi.org/10.5194/hess-18-4897-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, H., and Coauthors, 2014: Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere, 8, 23132333, https://doi.org/10.5194/tc-8-2313-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardelle, J., E. Berthier, Y. Arnaud, and A. Kääb, 2013: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7, 12631286, https://doi.org/10.5194/tc-7-1263-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gascoin, S., C. Kinnard, R. Ponce, S. Lhermitte, S. MacDonell, and A. Rabatel, 2011: Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere, 5, 10991113, https://doi.org/10.5194/tc-5-1099-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazirin, G., 2010: A century of investigations on outbursts of the ice-dammed Lake Merzbacher (central Tien Shan). Austrian J. Earth Sci., 103, 171179.

    • Search Google Scholar
    • Export Citation
  • Goel, M. K., 2011: Runoff coefficient. Encyclopedia of Snow, Ice and Glaciers, V. P. Singh, P. Singh, and U. K. Haritashya, Eds., Encyclopedia of Earth Sciences Series, Springer, 952–953.

    • Crossref
    • Export Citation
  • Groisman, P. Y., V. V. Koknaeva, T. A. Belokrylova, and T. R. Karl, 1991: Overcoming biases of precipitation measurement: A history of the USSR experience. Bull. Amer. Meteor. Soc., 72, 17251733, https://doi.org/10.1175/1520-0477(1991)072<1725:OBOPMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, https://doi.org/10.1175/2011JHM1324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., M. P. Clark, D. Kavetski, and J. D. Lundquist, 2015: Estimating mountain basin-mean precipitation from streamflow using Bayesian inference. Water Resour. Res., 51, 80128033, https://doi.org/10.1002/2014WR016736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., M. P. Clark, D. Kavetski, B. McGurk, T. H. Painter, and J. D. Lundquist, 2016: Combining snow, streamflow, and precipitation gauge observations to infer basin-mean precipitation. Water Resour. Res., 52, 87008723, https://doi.org/10.1002/2015WR018564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, K., 2005: The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mt. Res. Dev., 25, 332340, https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, R., and B. Holmgren, 2005: A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol., 51, 2536, https://doi.org/10.3189/172756505781829566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, N., S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch, 2015: Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere, 9, 20712088, https://doi.org/10.5194/tc-9-2071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 2006: Satellite-based estimation of precipitation using microwave sensors. Encyclopedia of Hydrological Sciences, M. G. Anderson and J. J. McDonnell, Eds., John Wiley & Sons, https://doi.org/10.1002/0470848944.hsa055.

    • Crossref
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. Bolvin, and E. Nelkin, 2014: 3IMERGM data set. NASA GSFC, accessed 12 October 2016, https://pmm.nasa.gov/GPM.

  • Huss, M., R. Hock, A. Bauder, and M. Funk, 2010: 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 37, L10501, https://doi.org/10.1029/2010GL042616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, M. Konz, A. B. Shrestha, and M. F. P. Bierkens, 2012a: Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110, 721736, https://doi.org/10.1007/s10584-011-0143-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., F. Pellicciotti, and A. B. Shrestha, 2012b: Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza Basin. Mt. Res. Dev., 32, 3038, https://doi.org/10.1659/MRD-JOURNAL-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. Petersen, S. Ragettli, and F. Pellicciotti, 2014: The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50, 22122226, https://doi.org/10.1002/2013WR014506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens, 2015: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci., 19, 46734687, https://doi.org/10.5194/hess-19-4673-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kääb, A., D. Treichler, C. Nuth, and E. Berthier, 2015: Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9, 557564, https://doi.org/10.5194/tc-9-557-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., M. Großhauser, and B. Marzeion, 2010: Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA, 107, 20 22320 227, https://doi.org/10.1073/pnas.1008162107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., and Coauthors, 2017: The quantification and correction of wind-induced precipitation measurement errors. Hydrol. Earth Syst. Sci., 21, 19731989, https://doi.org/10.5194/hess-21-1973-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krysanova, V., and Coauthors, 2015: Analysis of current trends in climate parameters, river discharge and glaciers in the Aksu River basin (central Asia). Hydrol. Sci. J., 60, 566590, https://doi.org/10.1080/02626667.2014.925559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Q. Yang, and Y. Liang, 2006: Study on the change of runoff and the effect factors in the Aksu River basin in recent 40 years. China Popul. Resour. Environ., 16 (3), 8387.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2015: Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products. Atmos. Res., 153, 119133, https://doi.org/10.1016/j.atmosres.2014.07.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., W. W. Immerzeel, A. B. Shrestha, and M. F. P. Bierkens, 2014: Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Climate Change, 4, 587592, https://doi.org/10.1038/nclimate2237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., E. C. White, M. N. Demuth, T. Bolch, R. Wheate, B. Menounos, M. J. Beedle, and J. M. Shea, 2011: Glacier water resources on the eastern slopes of the Canadian Rocky Mountains. Can. Water Resour. J., 36, 109134, https://doi.org/10.4296/cwrj3602823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., N. J. Cullen, and G. Kaser, 2009: Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: Implications for mass-balance modelling. J. Glaciol., 55, 292302, https://doi.org/10.3189/002214309788608822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2014: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Climate Change, 4, 6873, https://doi.org/10.1038/nclimate2055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountain Research Initiative EDW Working Group, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, https://doi.org/10.1016/j.rse.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., and J. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neckel, N., J. Kropáček, T. Bolch, and V. Hochschild, 2014: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9, 014009, https://doi.org/10.1088/1748-9326/9/1/014009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., D.-J. Seo, and D. Kim, 2010: Multisensor Precipitation Reanalysis. J. Hydrometeor., 11, 666682, https://doi.org/10.1175/2010JHM1210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osmonov, A., T. Bolch, C. Xi, A. Kurban, and W. Guo, 2013: Glacier characteristics and changes in the Sary-Jaz River basin (central Tien Shan, Kyrgyzstan)—1990–2010. Remote Sens. Lett., 4, 725734, https://doi.org/10.1080/2150704X.2013.789146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J., T. Bolch, A. Gafurov, and N. Prechtel, 2015: Snow cover distribution in the Aksu Catchment (central Tien Shan) 1986–2013 based on AVHRR and MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 53615375, https://doi.org/10.1109/JSTARS.2015.2477108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pieczonka, T., and T. Bolch, 2015: Region-wide glacier mass budgets and area changes for the central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Global Planet. Change, 128, 113, https://doi.org/10.1016/j.gloplacha.2014.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., 2017: Asia’s glaciers are a regionally important buffer against drought. Nature, 545, 169174, https://doi.org/10.1038/nature22062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragettli, S., F. Pellicciotti, R. Bordoy, and W. W. Immerzeel, 2013: Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour. Res., 49, 60486066, https://doi.org/10.1002/wrcr.20450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: Regional climate modelling with COSMO-CLM (CCLM). Meteor. Z., 17, 347348, https://doi.org/10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rumbaur, C., and Coauthors, 2015: Sustainable management of river oases along the Tarim River (SuMaRiO) in northwest China under conditions of climate change. Earth Syst. Dynam., 6, 83107, https://doi.org/10.5194/esd-6-83-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, A., T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal, 2015: Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere, 9, 865880, https://doi.org/10.5194/tc-9-865-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015: GPCC Full Data Reanalysis Version 7.0 at 0.5: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre at Deutscher Wetterdienst, accessed 18 July 2016, ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_v7_doi_download.html.

  • Sevruk, B., 1985: Systematischer Niederschlagsmessfehler in der Schweiz. Beitr. Geol. Schweiz Hydrol., 31, 6575.

  • Sevruk, B., and K. Mieglitz, 2002: The effect of topography, season and weather situation on daily precipitation gradients in 60 Swiss valleys. Water Sci. Technol., 45, 4148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shangguan, D., and Coauthors, 2007: Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Ann. Glaciol., 46, 204208, https://doi.org/10.3189/172756407782871693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) program and mission: An overview. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances In Global Change Research, No. 28, Springer, 611–653.

  • Sorg, A., T. Bolch, M. Stoffel, O. Solomina, and M. Beniston, 2012: Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Climate Change, 2, 725731, https://doi.org/10.1038/nclimate1592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., and G. E. Moglen, 2014: Evolutionary algorithm optimization of a multireservoir system with long lag times. J. Hydrol. Eng., 19, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stisen, S., A. L. Hǿjberg, L. Troldborg, J. C. Refsgaard, B. S. B. Christensen, M. Olsen, and H. J. Henriksen, 2012: On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes. Hydrol. Earth Syst. Sci., 16, 41574176, https://doi.org/10.5194/hess-16-4157-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, H., M. Gemmer, Y. Bai, B. Su, and W. Mao, 2011: Trends of streamflow in the Tarim River basin during the past 50 years: Human impact or climate change? J. Hydrol., 400, 19, https://doi.org/10.1016/j.jhydrol.2011.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thevs, N., 2011: Water scarcity and allocation in the Tarim basin: Decision structures and adaptations on the local level. J. Curr. Chin. Aff., 40, 113137, https://d-nb.info/102441566X/34.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, L. Zhang, and Z. Hao, 2014: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valéry, A., V. Andréassian, and C. Perrin, 2009: Inverting the hydrological cycle: When streamflow measurements help assess altitudinal precipitation gradients in mountain areas. IAHS Publ., 333, 281286.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Y. Shen, H. Su, J. Wang, W. Mao, Q. Gao, and S. Wang, 2008: Runoff changes in Aksu River basin during 1956–2006 and their impacts on water availability for Tarim River. J. Glaciol. Geocryology, 30 (4), 562568.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Ed., 2006: Local Records of the Aksu River Basin (in Chinese). Fangshi Publisher, 88 pp.

  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848, https://doi.org/10.1175/2011JHM1369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winiger, M., M. Gumpert, and H. Yamout, 2005: Karakorum–Hindukush–western Himalaya: Assessing high-altitude water resources. Hydrol. Processes, 19, 23292338, https://doi.org/10.1002/hyp.5887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, M., I. Juen, T. Mölg, P. Wagnon, J. Gómez, and G. Kaser, 2009: Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú. Cryosphere, 3, 2130, https://doi.org/10.5194/tc-3-21-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wortmann, M., V. Krysanova, Z. W. Kundzewicz, B. Su, and X. Li, 2014: Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China. Hydrol. Processes, 28, 63376350, https://doi.org/10.1002/hyp.10118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wortmann, M., T. Bolch, V. Krysanova, and S. Buda, 2016: Bridging glacier and river catchment scales: An efficient representation of glacier dynamics in a hydrological model. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-272.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and T. Ohata, 2001: A bias-corrected Siberian regional precipitation climatology. J. Hydrometeor., 2, 122139, https://doi.org/10.1175/1525-7541(2001)002<0122:ABCSRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 1999: Wind-induced precipitation undercatch of the Hellmann gauges. Hydrol. Res., 30, 5780, http://hr.iwaponline.com/content/30/1/57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., K. Fraedrich, G. Ren, B. Ye, X. Meng, and S. Kang, 2012: Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theor. Appl. Climatol., 109, 485496, https://doi.org/10.1007/s00704-012-0594-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemp, M., M. Hoelzle, and W. Haeberli, 2009: Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol., 50, 101111, https://doi.org/10.3189/172756409787769591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Z. Li, and J. Li, 2017: Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol., 63, 331342, https://doi.org/10.1017/jog.2016.142.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 527 260 2
PDF Downloads 447 266 0

Comparison and Correction of High-Mountain Precipitation Data Based on Glacio-Hydrological Modeling in the Tarim River Headwaters (High Asia)

View More View Less
  • 1 Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • | 2 Department of Geography, University of Zurich, Zurich, Switzerland
  • | 3 Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • | 4 National Climate Centre, Chinese Meteorological Administration, Beijing, China
  • | 5 Potsdam Institute for Climate Impact Research, Potsdam, Germany
Restricted access

Abstract

Mountain precipitation is often strongly underestimated as observations are scarce, biased toward lower-lying locations and prone to wind-induced undercatch, while topographical heterogeneity is large. This presents serious challenges to hydrological modeling for water resource management and climate change impact assessments in mountainous regions of the world, where a large population depends on water supply from the mountains. The headwaters of the Tarim River, covering four remote and highly glacierized Asian mountain ranges, are vital water suppliers to large agricultural communities along the Taklamakan Desert, northwest China. Assessments of future changes to these water towers have been hampered because of the large precipitation uncertainties. In this study, six existing precipitation datasets (observation-based reanalysis datasets, satellite observation datasets, and the output of high-resolution regional climate models) were compared over five headwaters of the Tarim River. The dataset incorporating the highest observation density (APHRODITE) is then corrected by calibrating the glacio-hydrological model Soil and Water Integrated Model–Glacier Dynamics (SWIM-G) to observed discharge, glacier hypsometry, and modeled glacier mass balance. Results show that this form of inverse modeling is able to inform the precipitation correction in such data-scarce conditions. Substantial disagreement of annual mean precipitation between the analyzed datasets, with coefficients of variation in catchment mean precipitation of 68% on average, was found. The model-based precipitation estimates are on average 1.5–4.3 times higher than the APHRODITE data, but fall between satellite-based and regional climate model results.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0106.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michel Wortmann, wortmann@pik-potsdam.de

Abstract

Mountain precipitation is often strongly underestimated as observations are scarce, biased toward lower-lying locations and prone to wind-induced undercatch, while topographical heterogeneity is large. This presents serious challenges to hydrological modeling for water resource management and climate change impact assessments in mountainous regions of the world, where a large population depends on water supply from the mountains. The headwaters of the Tarim River, covering four remote and highly glacierized Asian mountain ranges, are vital water suppliers to large agricultural communities along the Taklamakan Desert, northwest China. Assessments of future changes to these water towers have been hampered because of the large precipitation uncertainties. In this study, six existing precipitation datasets (observation-based reanalysis datasets, satellite observation datasets, and the output of high-resolution regional climate models) were compared over five headwaters of the Tarim River. The dataset incorporating the highest observation density (APHRODITE) is then corrected by calibrating the glacio-hydrological model Soil and Water Integrated Model–Glacier Dynamics (SWIM-G) to observed discharge, glacier hypsometry, and modeled glacier mass balance. Results show that this form of inverse modeling is able to inform the precipitation correction in such data-scarce conditions. Substantial disagreement of annual mean precipitation between the analyzed datasets, with coefficients of variation in catchment mean precipitation of 68% on average, was found. The model-based precipitation estimates are on average 1.5–4.3 times higher than the APHRODITE data, but fall between satellite-based and regional climate model results.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0106.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michel Wortmann, wortmann@pik-potsdam.de

Supplementary Materials

    • Supplemental Materials (PDF 807.55 KB)
Save