Using the Gradient Boosting Decision Tree to Improve the Delineation of Hourly Rain Areas during the Summer from Advanced Himawari Imager Data

Liang Ma Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, and Joint Laboratory of Meteorological Data and Machine Learning, Center for Public Meteorological Service, China Meteorology Administration, Beijing, China

Search for other papers by Liang Ma in
Current site
Google Scholar
PubMed
Close
,
Guoping Zhang Joint Laboratory of Meteorological Data and Machine Learning, Center for Public Meteorological Service, China Meteorology Administration, Beijing, China

Search for other papers by Guoping Zhang in
Current site
Google Scholar
PubMed
Close
, and
Er Lu Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Search for other papers by Er Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new classification scheme based on the gradient boosting decision tree (GBDT) algorithm is developed to improve the accuracy of rain area delineation for daytime, twilight, and nighttime modules using Advanced Himawari Imager on board Himawari-8 (AHI-8) geostationary satellite data and the U.S. Geological Survey digital elevation model data. The GBDT algorithm is able to efficiently manage the nonlinear relationships among high-dimensional data without being affected by overfitting problems. The new delineation module utilizes several features related to the physical variables, including cloud-top heights, cloud-top temperatures, cloud water paths, cloud phases, water vapor, temporal changes, and orographic variations. The scheme procedure is as follows. First, we perform extensive experiments to optimize the module parameters such that the equitable threat score (ETS) reaches its maximum value. Then, the GBDT-based modules are trained and classified with the optimum parameters. Finally, validation datasets are applied to test the true performance of the GBDT-based modules. The agreement between the estimations and observations of the ground-based rain gauges is verified. Results show that the ETS values of the GBDT-based modules are 0.42 for the daytime, 0.30 for the twilight period, and 0.32 for the nighttime. The cloud water path and cloud phase features make the most significant contributions to the modules. Comparisons drawn with the two probability-related methods show that our new scheme presents great advantages in terms of statistical scores on the overall performance.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Er Lu, elu@nuist.edu.cn

Abstract

A new classification scheme based on the gradient boosting decision tree (GBDT) algorithm is developed to improve the accuracy of rain area delineation for daytime, twilight, and nighttime modules using Advanced Himawari Imager on board Himawari-8 (AHI-8) geostationary satellite data and the U.S. Geological Survey digital elevation model data. The GBDT algorithm is able to efficiently manage the nonlinear relationships among high-dimensional data without being affected by overfitting problems. The new delineation module utilizes several features related to the physical variables, including cloud-top heights, cloud-top temperatures, cloud water paths, cloud phases, water vapor, temporal changes, and orographic variations. The scheme procedure is as follows. First, we perform extensive experiments to optimize the module parameters such that the equitable threat score (ETS) reaches its maximum value. Then, the GBDT-based modules are trained and classified with the optimum parameters. Finally, validation datasets are applied to test the true performance of the GBDT-based modules. The agreement between the estimations and observations of the ground-based rain gauges is verified. Results show that the ETS values of the GBDT-based modules are 0.42 for the daytime, 0.30 for the twilight period, and 0.32 for the nighttime. The cloud water path and cloud phase features make the most significant contributions to the modules. Comparisons drawn with the two probability-related methods show that our new scheme presents great advantages in terms of statistical scores on the overall performance.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Er Lu, elu@nuist.edu.cn
Save
  • Adler, R. F., and R. A. Mack, 1984: Thunderstorm cloud height–rainfall rate relations for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23, 280296, https://doi.org/10.1175/1520-0450(1984)023<0280:TCHRRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and A. Gruber, 2001: GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40, 15001514, https://doi.org/10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K.-L. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009a: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, https://doi.org/10.1175/2009JHM1139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K.-L. Hsu, B. Imam, S. Sorooshian, and R. J. Kuligowski, 2009b: Evaluating the utility of multispectral information in delineating the areal extent of precipitation. J. Hydrometeor., 10, 684700, https://doi.org/10.1175/2009JHM1077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 2006: Pattern Recognition and Machine Learning. Springer, 695 pp.

  • Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123140.

  • Capacci, D., and F. Porcù, 2009: Evaluation of a satellite multispectral VIS–IR daytime statistical rain-rate classifier and comparison with passive microwave rainfall estimates. J. Appl. Meteor. Climatol., 48, 284300, https://doi.org/10.1175/2008JAMC1969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, M., R. Brown, and C. C. Collier, 1993: Delineation of precipitation areas using Meteosat infrared and visible data in the region of the United Kingdom. J. Appl. Meteor., 32, 884898, https://doi.org/10.1175/1520-0450(1993)032<0884:DOPAUM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, C., D. Wang, X. Ma, and H. Li, 2016: Predicting short-term subway ridership and prioritizing its influential factors using gradient boosting decision trees. Sustainability, 8, 1100, https://doi.org/10.3390/su8111100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feidas, H., and A. Giannakos, 2011: Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data. Theor. Appl. Climatol., 104, 2542, https://doi.org/10.1007/s00704-010-0316-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Ann. Stat., 29, 11891232, https://doi.org/10.1214/aos/1013203451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, S., and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res., 98, 22 95922 967, https://doi.org/10.1029/93JD01617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, T. K., 1995: Random decision forests. Proc. Third Int. Conf. Document Analysis and Recognition, Montreal, Canada, IEEE, 278–282, https://doi.org/10.1109/ICDAR.1995.598994.

    • Crossref
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 606 pp.

  • Jiang, W., 2002: On weak base hypotheses and their implications for boosting regression and classification. Ann. Stat., 30, 5173, https://doi.org/10.1214/aos/1015362184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, P. W. S., W. D. Hogg, and P. A. Arkin, 1995: The role of visible data in improving satellite rain-rate estimates. J. Appl. Meteor., 34, 16081621, https://doi.org/10.1175/1520-0450-34.7.1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, D. E., M. M. Wei, K. R. Armbrust, J. E. Knickelbein, I. Y. L. Yeung, R. B. Nussenblatt, C.-C. Chan, and H. N. Sen, 2017: Gradient boosted decision tree classification of endophthalmitis versus uveitis and lymphoma from aqueous and vitreous IL-6 and IL-10 levels. J. Ocul. Pharmacol. Ther., 33, 319324, https://doi.org/10.1089/jop.2016.0132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2003: A night-rain delineation algorithm for infrared satellite data based on microphysical considerations. J. Appl. Meteor., 42, 12181226, https://doi.org/10.1175/1520-0450(2003)042<1218:ANDAFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipitation estimations from geostationary orbit and prospects for METEOSAT second generation. Meteor. Appl., 8, 2341, https://doi.org/10.1017/S1350482701001037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., C. Ding, S. Luan, Y. Wang, and Y. Wang, 2017: Prioritizing influential factors for freeway incident clearance time prediction using the gradient boosting decision trees method. IEEE Trans. Intell. Transp. Syst., 18, 23032310, https://doi.org/10.1109/TITS.2016.2635719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mas, J. F., and J. J. Flores, 2008: The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens., 29, 617663, https://doi.org/10.1080/01431160701352154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, https://doi.org/10.1175/MWR3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountrakis, G., J. Im, and C. Ogole, 2011: Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens., 66, 247259, https://doi.org/10.1016/j.isprsjprs.2010.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouri, K., T. Izumi, H. Suzue, and R. Yoshida, 2016: Algorithm theoretical basis document of cloud type/phase product. Meteorological Satellite Center Tech. Note 61, 19–31, http://www.data.jma.go.jp/mscweb/technotes/msctechrep61-2.pdf.

  • Natekin, A., and A. Knoll, 2013: Gradient boosting machines, a tutorial. Front. Neurorobot., 7, 21, https://doi.org/10.3389/fnbot.2013.00021.

  • Nauss, T., and A. A. Kokhanovsky, 2006: Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys., 6, 50315036, https://doi.org/10.5194/acp-6-5031-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nauss, T., and A. A. Kokhanovsky, 2007: Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: First results. Adv. Geosci., 10, 99102, https://doi.org/10.5194/adgeo-10-99-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1987a: Infrared and visible satellite rain estimation. Part I: A grid cell approach. J. Climate Appl. Meteor., 26, 15531564, https://doi.org/10.1175/1520-0450(1987)026<1553:IAVSRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1987b: Infrared and visible satellite rain estimation. Part II: A cloud definition approach. J. Climate Appl. Meteor., 26, 15651576, https://doi.org/10.1175/1520-0450(1987)026<1565:IAVSRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, N. X., S. C. Ou, and K. N. Liou, 1995: Removal of the solar component in AVHRR 3.7-μm radiances for the retrieval of cirrus cloud parameters. J. Appl. Meteor., 34, 482499, https://doi.org/10.1175/1520-0450-34.2.482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite–based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229, https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008a: Discriminating raining from non-raining clouds at mid-latitudes using Meteosat Second Generation daytime data. Atmos. Chem. Phys., 8, 23412349, https://doi.org/10.5194/acp-8-2341-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008b: Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI night-time data. Meteor. Appl., 15, 219230, https://doi.org/10.1002/met.56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008c: Precipitation process and rainfall intensity differentiation using Meteosat Second Generation spinning enhanced visible and infrared imager data. J. Geophys. Res., 113, D23206, https://doi.org/10.1029/2008JD010464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008d: First results on a process-oriented rain area classification technique using Meteosat Second Generation SEVIRI night-time data. Adv. Geosci., 16, 6372, https://doi.org/10.5194/adgeo-16-63-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., and G. A. Isaac, 1985: On a new approach for instantaneous rain area delineation in the midlatitudes using GOES data. J. Climate Appl. Meteor., 24, 12081218, https://doi.org/10.1175/1520-0450(1985)024<1208:OANAFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., F. Yu, and Y. Zhao, 2008: Inversion study of rainfall intensity field at all time during Mei-Yu period by using MTSAT multi-spectral imagery. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications II, A. M. Larar, M. J. Lynch, and M. Suzuki, Eds., International Society for Optics and Photonics (SPIE Proceedings, Vol. 7149), 714918, https://doi.org/10.1117/12.804842.

    • Crossref
    • Export Citation
  • Wu, H., C. S. Yuan, W. Qian, and B. N. Wang, 2012: Quality control of precipitation data in the meteorological monitoring. J. Meteor. Sci., 32, 659664, http://en.cnki.com.cn/Article_en/CJFDTotal-QXKX201206010.htm.

    • Search Google Scholar
    • Export Citation
  • Xie, J., and S. Coggeshall, 2010: Prediction of transfers to tertiary care and hospital mortality: A gradient boosting decision tree approach. Stat. Anal. Data Min., 3, 253258, https://doi.org/10.1002/sam.10079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, T., W. Chen, and G. Cao, 2016: Automated classification of neonatal amplitude-integrated EEG based on gradient boosting method. Biomed. Signal Process. Control, 28, 5057, https://doi.org/10.1016/j.bspc.2016.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, F., X.-Y. Zhuge, and C.-W. Zhang, 2011: Rainfall retrieval and nowcasting based on multispectral satellite images. Part II: Retrieval study on daytime half-hour rain rate. J. Hydrometeor., 12, 12711285, https://doi.org/10.1175/2011JHM1374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuge, X.-Y., F. Yu, and C.-W. Zhang, 2011: Rainfall retrieval and nowcasting based on multispectral satellite images. Part I: Retrieval study on daytime 10-minute rain rate. J. Hydrometeor., 12, 12551270, https://doi.org/10.1175/2011JHM1373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1842 809 30
PDF Downloads 915 99 7