• AghaKouchak, A., and A. Mehran, 2013: Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour. Res., 49, 71447149, https://doi.org/10.1002/wrcr.20498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A., and Coauthors, 2014: NASA GPM-Ground Validation Integrated Precipitation and Hydrology Experiment 2014 Science Plan. Duke University Tech. Rep., 64 pp., https://doi.org/10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Bech, J., B. Codina, J. Lorente, and D. Bebbington, 2003: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J. Atmos. Oceanic Technol., 20, 845855, https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Carey, L. D., S. A. Rutledge, and D. A. Ahijevych, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., G. Panegrossi, A. C. Marra, P. Sanò, M. Petracca, and S. Dietrich, 2015a: Verification study of CDRD and PNPR passive microwave precipitation retrieval algorithms using spaceborne precipitation radars. Earth Observation for Water Cycle Science 2015, Frascati, Italy, ESA-ESRIN, ID:23, http://www.eo4water2015.info.

  • Casella, D., G. Panegrossi, P. Sanò, L. Milani, M. Petracca, and S. Dietrich, 2015b: A novel algorithm for detection of precipitation in tropical regions using PMW radiometers. Atmos. Meas. Tech., 8, 12171232, https://doi.org/10.5194/amt-8-1217-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Hou, E. Smith, V. N. Bringi, S. A. Rutledge, E. Gorgucci, W. A. Petersen, and G. S. Jackson, 2008: Use of dual polarization radars for validation of spaceborne precipitation measurements: rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 11271145, https://doi.org/10.1175/2008BAMS2177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and V. Chandrasekar, 2015: Estimation of light rainfall using Ku-band Dual-Polarization Radar. IEEE Trans. Geosci. Remote Sens., 53, 51975208, https://doi.org/10.1109/TGRS.2015.2419212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crisologo, I., G. Vulpiani, C. C. Abon, C. P. C. David, A. Bronstert, and M. Heistermann, 2014: Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines). Asia-Pac. J. Atmos. Sci., 50, 595607, https://doi.org/10.1007/s13143-014-0049-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, https://doi.org/10.1109/JSTARS.2015.2403303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feidas, H., F. Porcù, S. Puca, A. Rinollo, C. Lagouvardos, and V. Kotroni, 2018: Validation of the H-SAF precipitation product H03 over Greece using rain gauge data. Theor. Appl. Climatol., 131, 377398, https://doi.org/10.1007/s00704-016-1981-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., M. Hagen, and T. Einfalt, 2006: A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity. J. Atmos. Oceanic Technol., 23, 865887, https://doi.org/10.1175/JTECH1920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furukawa, K., T. Nio, T. Konishi, R. Oki, T. Masaki, T. Kubota, T. Iguchi, and H. Hanado, 2015: Current status of the Dual-Frequency Precipitation Radar on the Global Precipitation Measurement core spacecraft. Sensors, Systems, and Next-Generation Satellites XIX, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9639), 96390G, https://doi.org/10.1117/12.2193868.

    • Crossref
    • Export Citation
  • Germann, U., and J. Joss, 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41, 542557, https://doi.org/10.1175/1520-0450(2002)041<0542:MPTERP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Search Google Scholar
    • Export Citation
  • Habib, E., G. J. Ciach, and W. F. Krajewski, 2004: A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall. Adv. Water Resour., 27, 967980, https://doi.org/10.1016/j.advwatres.2004.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., S. J. Driscoll, and M. Kitchen, 2000: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor. Appl., 7, 135144, https://doi.org/10.1017/S1350482700001468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heistermann, M., S. Jacobi, and T. Pfaff, 2013: Technical Note: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863871, https://doi.org/10.5194/hess-17-863-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., L. McMurdie, W. Petersen, and M. Schallwer, 2015: OLYMPEX ground validation experiment field operations plan (version 3). Tech. Rep., University of Washington, 57 pp., http://olympex.atmos.washington.edu/docs/OLYMPEX_OpsPlan.pdf.

  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2016: Precipitation rates estimated with GPM’s dual-frequency radar. 2016 IEEE Int. Geoscience and Remote Sensing Symp., Beijing, China, IEEE, 3917–3918, https://doi.org/10.1109/IGARSS.2016.7730017.

    • Crossref
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 81 pp., http://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_201708_whole_1.pdf.

  • Joss, J., and R. Lee, 1995: The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 34, 26122630, https://doi.org/10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300, https://doi.org/10.1175/JHM-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marra, A. C., D. Casella, P. Sanò, G. Panegrossi, M. Petracca, S. Dietrich, and V. Levizzani, 2015: Analysis and comparison of global precipitation datasets with gridded products from passive microwave retrieval algorithms in the GPM era. Earth Observation for Water Cycle Science, Frascati, Italy, ESA, http://congrexprojects.com/custom/15C10/D2_1045_Marra.pdf.

  • Marra, A. C., and Coauthors, 2017: Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory. Atmos. Res., 192, 7290, https://doi.org/10.1016/j.atmosres.2017.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., G. Vulpiani, and E. Picciotti, 2004: Rain field and reflectivity vertical profile reconstruction from C-band radar volumetric data. IEEE Trans. Geosci. Remote Sens., 42, 10331046, https://doi.org/10.1109/TGRS.2003.820313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and Coauthors, 2013: Precipitation products from the Hydrology SAF. Nat. Hazards Earth Syst. Sci., 13, 19591981, https://doi.org/10.5194/nhess-13-1959-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA/JAXA, 2016: Global Precipitation Measurement precipitation processing system: File specification 2ADPR. NASA/JAXA Tech. Rep., 127 pp., https://storm.pps.eosdis.nasa.gov/storm/data/docs/filespec.GPM.V1.2ADPR.pdf.

  • Nash, J. E., and J. V. Sutcliff, 1970: River flow forecasting through conceptual models 1: A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neeck, S. P., R. K. Kakar, A. A. Azarbarzin, and A. Y. Hou, 2014: Global Precipitation Measurement (GPM) launch, commissioning, and early operations. Sensors, Systems, and Next-Generation Satellites XVIII, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9241), 924104, https://doi.org/10.1117/12.2069868.

    • Crossref
    • Export Citation
  • Nurmi, P., 2003: Recommendations on the verification of local weather forecasts. ECMWF Tech. Memo. 430, 19 pp., https://www.ecmwf.int/en/elibrary/11401-recommendations-verification-local-weather-forecasts.

  • Panegrossi, G., D. Casella, S. Dietrich, A. C. Marra, L. Milani, M. Petracca, P. Sanò, and A. Mugnai, 2014: CDRD and PNPR passive microwave precipitation retrieval algorithms: Extension to the MSG full disk area. Proc. 2014 EUMETSAT Meteorological Satellite Conf., Geneva, Switzerland, EUMETSAT, https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2076129.html.

  • Panegrossi, G., and Coauthors, 2016: Use of the GPM constellation for monitoring heavy precipitation events over the Mediterranean region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 2733–2753, https://doi.org/10.1109/JSTARS.2016.2520660.

    • Crossref
    • Export Citation
  • Pignone, F., N. Rebora, F. Silvestro, and F. Castelli, 2010: GRISO (Generatore Random di Interpolazioni Spaziali da Osservazioni incerte)-Piogge. Rep. 272/2010, 353 pp.

  • Porcù, F., L. Milani, and M. Petracca, 2014: On the uncertainties in validating satellite instantaneous rainfall estimates with raingauge operational network. Atmos. Res., 144, 7381, https://doi.org/10.1016/j.atmosres.2013.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puca, S., and Coauthors, 2014: The validation service of the hydrological SAF geostationary and polar satellite precipitation products. Nat. Hazards Earth Syst. Sci., 14, 871889, https://doi.org/10.5194/nhess-14-871-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinollo, A., and Coauthors, 2013: Definition and impact of a quality index for radar-based reference measurements in the H-SAF precipitation product validation. Nat. Hazards Earth Syst. Sci., 13, 26952705, https://doi.org/10.5194/nhess-13-2695-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanò, P., D. Casella, G. Panegrossi, A. C. Marra, M. Petracca, and S. Dietrich, 2015: The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for the Cross-track Scanning ATMS Radiometer. EUMETSAT Meteorological Satellite Conf., Toulouse, France, EUMETSAT, 8 pp., https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2305526.html.

  • Sanò, P., G. Panegrossi, D. Casella, A. C. Marra, F. Di Paola, and S. Dietrich, 2016: The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: Description and verification study over Europe and Africa using GPM and TRMM spaceborne radars. Atmos. Meas. Tech., 9, 54415460, https://doi.org/10.5194/amt-9-5441-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwaller, M. R., and K. R. Morris, 2011: A ground validation network for the Global Precipitation Measurement mission. J. Atmos. Oceanic Technol., 28, 301319, https://doi.org/10.1175/2010JTECHA1403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sebastianelli, S., F. Russo, F. Napolitano, and L. Baldini, 2013: On precipitation measurements collected by a weather radar and a rain gauge network. Nat. Hazards Earth Syst. Sci., 13, 605623, https://doi.org/10.5194/nhess-13-605-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., C. A. Fiebrich, D. S. Arndt, S. E. Fredrickson, and T. W. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474494, https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silvestro, F., and Coauthors, 2016: What if the 25 October 2011 event that struck Cinque Terre (Liguria) had happened in Genoa, Italy? Flooding scenarios, hazard mapping and damage estimation. Nat. Hazards Earth Syst. Sci., 16, 17371753, https://doi.org/10.5194/nhess-16-1737-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speirs, P., M. Gabella, and A. Berne, 2017: A comparison between the GPM Dual-Frequency Precipitation Radar and ground-based radar precipitation rate estimates in the Swiss Alps and Plateau. J. Hydrometeor., 18, 12471269, https://doi.org/10.1175/JHM-D-16-0085.1.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. L. Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477, https://doi.org/10.1175/1520-0426(2003)020<1460:RGADMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., P. Tabary, J. P. D. Chatelet, and F. S. Marzano, 2008: Comparison of advanced radar polarimetric techniques for operational attenuation correction at C band. J. Atmos. Oceanic Technol., 25, 11181135, https://doi.org/10.1175/2007JTECHA936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., A. Rinollo, S. Puca, and M. Montopoli, 2014: A quality-based approach for radar rain field reconstruction and the H-SAF precipitation products validation. Proc. Eighth European Radar Conf., Garmish-Partenkirchen, Germany, ERAD, Abstract 220, 6 pp., http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/220_Vulpiani.pdf.

  • Vulpiani, G., L. Baldini, and N. Roberto, 2015: Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar. Atmos. Meas. Tech., 8, 46814698, https://doi.org/10.5194/amt-8-4681-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 627 332 1
PDF Downloads 655 376 1

Validation of GPM Dual-Frequency Precipitation Radar (DPR) Rainfall Products over Italy

View More View Less
  • 1 Department of Civil Protection, Presidency of the Council of Ministers, Rome, Italy
  • | 2 Department of Physics and Earth Science, University of Ferrara, Ferrara, Italy
  • | 3 Department of Physics and Astronomy, University of Bologna, Bologna, Italy
  • | 4 Institute of Atmospheric Sciences and Climate, Italian National Research Council, Rome, Italy
Restricted access

Abstract

The Ka–Ku Dual-Frequency Precipitation Radar (DPR) and the Microwave Imager on board the Global Precipitation Measurement (GPM) mission core satellite have been collecting data for more than 3 years, providing precipitation products over the globe, including oceans and remote areas where ground-based precipitation measurements are not available. The main objective of this work is to validate the GPM-DPR products over a key climatic region with complex orography such as the Italian territory. The performances of the DPR precipitation rate products are evaluated over an 18-month period (July 2015–December 2016) using both radar and rain gauge data. The ground reference network is composed of 22 weather radars and more than 3000 rain gauges. DPR dual-frequency products generally show better performance with respect to the single-frequency (i.e., Ka- or Ku-band only) products, especially when ground radar data are taken as reference. A sensitivity analysis with respect to season and rainfall intensity is also carried out. It was found that the normal scan (NS) product outperforms the high-sensitivity scan (HS) and matched scan (MS) during the summer season. A deeper analysis is carried out to investigate the larger discrepancies between the DPR-NS product and ground reference data. The most relevant improvement of the DPR products’ performance was found by limiting the comparison to the upscaled radar data with a higher quality index. The resulting scores in comparison with ground radars are mean error (ME) = −0.44 mm h−1, RMSE = 3.57 mm h−1, and fractional standard error (FSE) = 142%, with the POD = 65% and FAR = 1% for rainfall above 0.5 mm h−1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leo Pio D’Adderio, dadderio@fe.infn.it

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

The Ka–Ku Dual-Frequency Precipitation Radar (DPR) and the Microwave Imager on board the Global Precipitation Measurement (GPM) mission core satellite have been collecting data for more than 3 years, providing precipitation products over the globe, including oceans and remote areas where ground-based precipitation measurements are not available. The main objective of this work is to validate the GPM-DPR products over a key climatic region with complex orography such as the Italian territory. The performances of the DPR precipitation rate products are evaluated over an 18-month period (July 2015–December 2016) using both radar and rain gauge data. The ground reference network is composed of 22 weather radars and more than 3000 rain gauges. DPR dual-frequency products generally show better performance with respect to the single-frequency (i.e., Ka- or Ku-band only) products, especially when ground radar data are taken as reference. A sensitivity analysis with respect to season and rainfall intensity is also carried out. It was found that the normal scan (NS) product outperforms the high-sensitivity scan (HS) and matched scan (MS) during the summer season. A deeper analysis is carried out to investigate the larger discrepancies between the DPR-NS product and ground reference data. The most relevant improvement of the DPR products’ performance was found by limiting the comparison to the upscaled radar data with a higher quality index. The resulting scores in comparison with ground radars are mean error (ME) = −0.44 mm h−1, RMSE = 3.57 mm h−1, and fractional standard error (FSE) = 142%, with the POD = 65% and FAR = 1% for rainfall above 0.5 mm h−1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leo Pio D’Adderio, dadderio@fe.infn.it

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save