• Adamson, P. T., I. D. Rutherfurd, M. C. Peel, and I. A. Conlan, 2009: The hydrology of the Mekong River. The Mekong: Biophysical Environment of an International River Basin, I. C. Campbell, Ed., Elsevier, 53–76, https://doi.org/10.1016/B978-0-12-374026-7.00004-8.

    • Crossref
    • Export Citation
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources, and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Bertiz, J., 2017: Identifying climate change and variability in the Philippines and Indochina Peninsula: The Maritime Continent. Research Practicum Paper, Eleanor Roosevelt High School, 58 pp.

  • Buckley, B. M., and Coauthors, 2010: Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl. Acad. Sci. USA, 107, 67486752, https://doi.org/10.1073/pnas.0910827107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CGIAR, 2017: Water, land and ecosystems dataset on dams of the Irrawaddy, Mekong, Red and Salween River basins. CGIAR Research Program on Water, Land, and Ecosystems, accessed 27 April 2018, https://wle-mekong.cgiar.org/maps/.

  • Church, J. A., N. J. White, R. Coleman, K. Lambeck, and J. X. Mitrovica, 2004: Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Climate, 17, 26092625, https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, https://doi.org/10.1175/2009JCLI2735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2016: Historical and future changes in streamflow and continental runoff: A review. Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts, Geophys. Monogr., Vol. 221, Amer. Geophys. Union, 17–37, https://doi.org/10.1002/9781118971772.ch2.

    • Crossref
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2003: New estimates of continental discharge and oceanic freshwater transport. 17th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., JP1.11, https://ams.confex.com/ams/annual2003/techprogram/paper_55037.htm.

  • Daiss, T., 2016: Why Vietnam is running dry, worst drought in nearly 100 years. Forbes, 25 May, https://www.forbes.com/sites/timdaiss/2016/05/25/why-vietnam-is-running-dry-worst-drought-in-nearly-100-yrs/#7f27e01274b3.

  • Delgado, J. K., B. Merz, and H. Apel, 2012: A climate-flood link for the lower Mekong River. Hydrol. Earth Syst. Sci., 16, 15331541, https://doi.org/10.5194/hess-16-1533-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2012: Irrigation in southern and eastern Asia in figures: AQUASTAT Survey–2011. FAO Water Rep. 37, 512 pp., http://www.fao.org/docrep/016/i2809e/i2809e.pdf.

  • Ghosh, S., H. Vittal, T. Sharma, S. Karmakar, K. S. Kasiviswanathan, Y. Dhanesh, K. P. Sudheer, and S. S. Gunthe, 2016: Indian summer monsoon rainfall: Implications of contrasting trends in the spatial variability of means and extremes. PLOS ONE, 11, e0158670, https://doi.org/10.1371/journal.pone.0158670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, 21, 27902809, https://doi.org/10.1175/2007JCLI2076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guha-Sapir, D., R. Below, and Ph. Hoyois, 2017: EM-DAT: The CRED/OFDA International Disaster Database. Université Catholique de Louvain, www.emdat.be.

  • Hijioka, Y., and Coauthors, 2014: Asia. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects, Cambridge University Press, 1327–1370.

  • Hoque, M. A., P. F. D. Scheelbeek, P. Vineis, A. E. Khan, K. M. Ahmed, and A. P. Butler, 2016: Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia. Climatic Change, 136, 247263, https://doi.org/10.1007/s10584-016-1617-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multi-yr, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenness, J., J. Dooley, J. Aguilar-Manjarrez, and C. Riva, 2007a: African Water Resource Database: GIS-based tools for inland aquatic resource management—1. Concepts and application case studies. CIFA Tech. Paper 33/1, FAO, 167 pp., http://www.fao.org/docrep/010/a1170e/a1170e00.htm.

  • Jenness, J., J. Dooley, J. Aguilar-Manjarrez, and C. Riva, 2007b: African Water Resource Database: GIS-based tools for inland aquatic resource management—2. Technical manual and workbook. CIFA Tech. Paper No. 33/2, FAO, 308 pp., http://www.fao.org/docrep/010/a0907e/a0907e00.htm.

  • Larson, C., 2016: Mekong megadrought erodes food security. Science, 6 April, https://doi.org/10.1126/science.aaf9880.

    • Crossref
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X. X., L. Siyue, M. Kummu, R. Padawangu, and J. J. Wang, 2014: Observed changes in water flow at Chiang Saen in the lower Mekong: Impacts of Chinese dams? Quat. Int., 336, 145157, https://doi.org/10.1016/j.quaint.2014.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., and S. DiNapoli, 2014: The variability of the Southeast Asian summer monsoon. Int. J. Climatol., 34, 893901, https://doi.org/10.1002/joc.3735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MRC, 2005: Mekong River Commission: Overview of the hydrology of the Mekong basin. Mekong River Commission, 73 pp., http://www.mekonginfo.org/assets/midocs/0001968-inland-waters-overview-of-the-hydrology-of-the-mekong-basin.pdf.

  • Nigam, S., and H.-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans. Part-I: COADS Observations. J. Climate, 6, 657676, https://doi.org/10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Office of the Resident Coordinator Viet Nam, 2016: Viet Nam: Drought and saltwater intrusion. UN Viet Nam Situation Rep. 7, 5 pp., http://www.un.org.vn/en/publications/doc_details/526-viet-nam-drought-and-saltwater-intrusion-situation-report-no-7-as-of-25-october-2016.html.

  • Räsänen, T. A., and M. Kummu, 2013: Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River basin. J. Hydrol., 476, 154168, https://doi.org/10.1016/j.jhydrol.2012.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räsänen, T. A., V. Lindgren, J. H. A. Guillaume, B. M. Buckley, and M. Kummu, 2016: On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia. Climate Past, 12, 18891905, https://doi.org/10.5194/cp-12-1889-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Malca, A., 2018: Impact of climate variability, change and damming in streamflow of the Mekong River. Research Practicum Paper, Eleanor Roosevelt High School, 54 pp.

  • Schneider, U., P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, 2017a: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., M. Ziese, A. Meyer-Christoffer, P. Finger, E. Rustemeier, and A. Becker, 2017b: The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. Proc. Int. Assoc. Hydrol. Sci., 374, 2934, https://doi.org/10.5194/piahs-374-29-2016.

    • Search Google Scholar
    • Export Citation
  • Son, D. M., and P. Thuoc, 2003: Management of coastal fisheries in Vietnam. Assessment, management and future directions for coastal fisheries in Asian countries, G. T. Silvestre et al., Eds., WorldFish Center Conf. Proc. 67, 957–986, http://pubs.iclarm.net/resource_centre/proceedings.pdf.

  • Wang, W., H. Lu, D. Yang, K. Sothea, Y. Jiao, B. Gao, X. Peng, and Z. Pang, 2016: Modelling hydrologic processes in the Mekong River basin using a distributed model driven by satellite precipitation and rain gauge observations. PLOS ONE, 11, e0152229, https://doi.org/10.1371/journal.pone.0152229.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., 2014: MeteoInfo: GIS software for meteorological data visualization and analysis. Meteor. Appl., 21, 360368, https://doi.org/10.1002/met.1345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2015: Terrestrial water budget data archive: Monthly time series (1900–2014) (V. 3.01). Accessed 20 October 2015, http://climate.geog.udel.edu/~climate/html_pages/Global2014/GlobalWbTs2014.html.

  • WWF, 2017: Greater Mekong. World Wildlife Fund, accessed 23 February 2017, https://www.worldwildlife.org/places/greater-mekong.

  • Xie, S.-P., H. Xu, N. H. Saji, Y. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, https://doi.org/10.1175/JCLI3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Z., J. P. Liu, and Q. Ge, 2011: Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: Connection to damming, monsoon and ENSO. Earth Surf. Processes Landforms, 36, 296308, https://doi.org/10.1002/esp.2036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., T. Satomura, and J. Matsumoto, 2007: Climatological characteristics of the intraseasonal variation of precipitation over the Indochina Peninsula. J. Climate, 20, 53015315, https://doi.org/10.1175/2007JCLI1357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, B. Wang, and G. Wu, 2002: Onset of the summer monsoon over the Indochina Peninsula: Climatology and interannual variations. J. Climate, 15, 32063221, https://doi.org/10.1175/1520-0442(2002)015<3206:OOTSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 557 366 0
PDF Downloads 541 373 0

Hydroclimate Variability and Change over the Mekong River Basin: Modeling and Predictability and Policy Implications

View More View Less
  • 1 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 2 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and Jefferson Science Fellowship Program, National Academy of Sciences, Washington, D.C.
Restricted access

Abstract

The Mekong River is the lifeblood of the Southeast (SE) Asian economies. In situ and satellite-based precipitation are analyzed to assess the amount of water received as precipitation in the river basin (Mekong basin water), in particular, the amount each country receives. Laos, Thailand, and Cambodia contribute ~75% of the basin water during March–September, whereas China’s contribution is 10%–15%, except in winter when it rises to 25%. The processing of Mekong basin water into Mekong streamflow entails accounting for the uncertain water losses but, interestingly, interannual variations in Mekong basin water can be processed into Mekong streamflow using a simple hydrologic model, which is validated using monthly river discharge data from four stations. Preliminary evidence for the impact of upbasin dams on downstream flow, especially the timing of peak summer flow, is presented. Characterization of El Niño’s influence on SE Asian rainfall reveals significant rainfall reductions in the fall preceding and the spring following El Niño’s peak phase (winter); such reductions at the bookends of the dry season in SE Asia (winter) generate droughts, as in 2015–16. The linear trend in twentieth-century rainfall assesses the vulnerability of the region to climate change. The analysis indicates the feasibility of streamflow prediction using a simple hydrologic model driven by high-resolution precipitation observations and forecasts. It raises the prospects of drought prediction based on El Niño’s emergence/forecast. Finally, by showing the Mekong to be largely a rain-fed and not snowmelt-fed river, it provides quantitative context for assessing the notion of Chinese control on the lower Mekong via upbasin dams.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sumant Nigam, nigam@umd.edu

Abstract

The Mekong River is the lifeblood of the Southeast (SE) Asian economies. In situ and satellite-based precipitation are analyzed to assess the amount of water received as precipitation in the river basin (Mekong basin water), in particular, the amount each country receives. Laos, Thailand, and Cambodia contribute ~75% of the basin water during March–September, whereas China’s contribution is 10%–15%, except in winter when it rises to 25%. The processing of Mekong basin water into Mekong streamflow entails accounting for the uncertain water losses but, interestingly, interannual variations in Mekong basin water can be processed into Mekong streamflow using a simple hydrologic model, which is validated using monthly river discharge data from four stations. Preliminary evidence for the impact of upbasin dams on downstream flow, especially the timing of peak summer flow, is presented. Characterization of El Niño’s influence on SE Asian rainfall reveals significant rainfall reductions in the fall preceding and the spring following El Niño’s peak phase (winter); such reductions at the bookends of the dry season in SE Asia (winter) generate droughts, as in 2015–16. The linear trend in twentieth-century rainfall assesses the vulnerability of the region to climate change. The analysis indicates the feasibility of streamflow prediction using a simple hydrologic model driven by high-resolution precipitation observations and forecasts. It raises the prospects of drought prediction based on El Niño’s emergence/forecast. Finally, by showing the Mekong to be largely a rain-fed and not snowmelt-fed river, it provides quantitative context for assessing the notion of Chinese control on the lower Mekong via upbasin dams.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sumant Nigam, nigam@umd.edu
Save