Estimation of Landscape Soil Water Losses from Satellite Observations of Soil Moisture

Ruzbeh Akbar Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Ruzbeh Akbar in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Short Gianotti Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Daniel J. Short Gianotti in
Current site
Google Scholar
PubMed
Close
,
Kaighin A. McColl Department of Earth and Planetary Sciences, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Kaighin A. McColl in
Current site
Google Scholar
PubMed
Close
,
Erfan Haghighi Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Erfan Haghighi in
Current site
Google Scholar
PubMed
Close
,
Guido D. Salvucci Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Guido D. Salvucci in
Current site
Google Scholar
PubMed
Close
, and
Dara Entekhabi Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Dara Entekhabi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents an observation-driven technique to delineate the dominant boundaries and temporal shifts between different hydrologic regimes over the contiguous United States (CONUS). The energy- and water-limited evapotranspiration regimes as well as percolation to the subsurface are hydrologic processes that dominate the loss of stored water in the soil following precipitation events. Surface soil moisture estimates from the NASA Soil Moisture Active Passive (SMAP) mission, over three consecutive summer seasons, are used to estimate the soil water loss function. Based on analysis of the rates of soil moisture dry-downs, the loss function is the conditional expectation of negative increments in the soil moisture series conditioned on soil moisture itself. An unsupervised classification scheme (with cross validation) is then implemented to categorize regions according to their dominant hydrological regimes based on their estimated loss functions. An east–west divide in hydrologic regimes over CONUS is observed with large parts of the western United States exhibiting a strong water-limited evapotranspiration regime during most of the times. The U.S. Midwest and Great Plains show transitional behavior with both water- and energy-limited regimes present. Year-to-year shifts in hydrologic regimes are also observed along with regional anomalies due to moderate drought conditions or above-average precipitation. The approach is based on remotely sensed surface soil moisture (approximately top 5 cm) at a resolution of tens of kilometers in the presence of soil texture and land cover heterogeneity. The classification therefore only applies to landscape-scale effective conditions and does not directly account for deeper soil water storage.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0200.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ruzbeh Akbar, rakbar@mit.edu

Abstract

This study presents an observation-driven technique to delineate the dominant boundaries and temporal shifts between different hydrologic regimes over the contiguous United States (CONUS). The energy- and water-limited evapotranspiration regimes as well as percolation to the subsurface are hydrologic processes that dominate the loss of stored water in the soil following precipitation events. Surface soil moisture estimates from the NASA Soil Moisture Active Passive (SMAP) mission, over three consecutive summer seasons, are used to estimate the soil water loss function. Based on analysis of the rates of soil moisture dry-downs, the loss function is the conditional expectation of negative increments in the soil moisture series conditioned on soil moisture itself. An unsupervised classification scheme (with cross validation) is then implemented to categorize regions according to their dominant hydrological regimes based on their estimated loss functions. An east–west divide in hydrologic regimes over CONUS is observed with large parts of the western United States exhibiting a strong water-limited evapotranspiration regime during most of the times. The U.S. Midwest and Great Plains show transitional behavior with both water- and energy-limited regimes present. Year-to-year shifts in hydrologic regimes are also observed along with regional anomalies due to moderate drought conditions or above-average precipitation. The approach is based on remotely sensed surface soil moisture (approximately top 5 cm) at a resolution of tens of kilometers in the presence of soil texture and land cover heterogeneity. The classification therefore only applies to landscape-scale effective conditions and does not directly account for deeper soil water storage.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0200.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ruzbeh Akbar, rakbar@mit.edu

Supplementary Materials

    • Supplemental Materials (DOCX 1.04 MB)
Save
  • Akbar, R., D. J. Short Gianotti, K. A. McColl, E. Haghighi, G. D. Salvucci, and D. Entekhabi, 2018: Hydrological storage length scales represented by remote sensing estimates of soil moisture and precipitation. Water Resour. Res., 54, 14761492, https://doi.org/10.1002/2017WR021508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albergel, C., T. Pellarin, N. Fritz, F. Froissard, A. Petitpa, B. Piguet, and E. Martin, 2008: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., 12, 13231337, https://doi.org/10.5194/hess-12-1323-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaudoing, H., and M. Rodell, 2016: GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed September 2017, https://doi.org/10.5067/SXAVCZFAQLNO.

    • Crossref
    • Export Citation
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, 2017: State of the Climate in 2016. Bull. Amer. Meteor. Soc., 98 (Suppl.), https://doi.org/10.1175/2017BAMSStateoftheClimate.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavanaugh, M. L., S. A. Kurc, and R. L. Scott, 2011: Evapotranspiration partitioning in semiarid shrubland ecosystems: A two-site evaluation of soil moisture control on transpiration. Ecohydrology, 4, 671681, https://doi.org/10.1002/eco.157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., and Coauthors, 2016: Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens., 54, 49945007, https://doi.org/10.1109/TGRS.2016.2561938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, N., 2013: SMAP ancillary data report: Soil attributes. SMAP Science Doc. 044, JPL D-53058, 16 pp., http://smap.jpl.nasa.gov/files/smap2/044_soil_attrib.pdf.

  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, https://doi.org/10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 29002922, https://doi.org/10.1175/1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., F. J. Zeng, A. Ducharne, J. C. Morrill, and R. D. Koster, 2000: The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeor., 1, 121134, https://doi.org/10.1175/1525-7541(2000)001<0121:TSOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dralle, D. N., and S. E. Thompson, 2016: A minimal probabilistic model for soil moisture in seasonally dry climates. Water Resour. Res., 52, 15071517, https://doi.org/10.1002/2015WR017813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., G. Vico, and A. Porporato, 2012: On the effects of seasonality on soil water balance and plant growth. Water Resour. Res., 48, W05543, https://doi.org/10.1029/2011WR011263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., T. E. Dawson, D. D. Ackerly, L. S. Santiago, and S. E. Thompson, 2017: Reconciling seasonal hydraulic risk and plant water use through probabilistic soil-plant dynamics. Global Change Biol., 23, 37583769, https://doi.org/10.1111/gcb.13640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., E. Harris, and S. M. Quiring, 2014: Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci., 18, 139154, https://doi.org/10.5194/hess-18-139-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J., T. Hastie, and R. Tibshirani, 2001: The Elements of Statistical Learning. Springer, 533 pp.

  • Ghannam, K., T. Nakai, A. Paschalis, C. A. Oishi, A. Kotani, Y. Igarashi, T. Kumagai, and G. G. Katul, 2016: Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res., 52, 14271445, https://doi.org/10.1002/2015WR017983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, T., K. M. Befus, S. Jasechko, E. Luijendijk, and M. B. Cardenas, 2015: The global volume and distribution of modern groundwater. Nat. Geosci., 9, 161167, https://doi.org/10.1038/ngeo2590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., B. Mueller, W. Dorigo, and S. I. Seneviratne, 2014: Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens. Environ., 154, 246252, https://doi.org/10.1016/j.rse.2014.08.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, G., D. Witten, T. Hastie, and R. Tibshirani, 2014: An Introduction to Statistical Learning: With Applications in R. Springer, 426 pp.

    • Crossref
    • Export Citation
  • Jung, M., and Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516520, https://doi.org/10.1038/nature20780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., A. Porporato, E. Daly, A. C. Oishi, H.-S. Kim, P. C. Stoy, J.-Y. Juang, and M. B. Siqueira, 2007: On the spectrum of soil moisture from hourly to interannual scales. Water Resour. Res., 43, W05428, https://doi.org/10.1029/2006WR005356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. M. Martinuzzi, J. Font, and M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, https://doi.org/10.1109/36.942551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4, 408423, https://doi.org/10.1175/1525-7541(2003)4<408:IOLSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., R. H. Reichle, and S. P. P. Mahanama, 2017: A data-driven approach for daily real-time estimates and forecasts of near-surface soil moisture. J. Hydrometeor., 18, 837843, https://doi.org/10.1175/JHM-D-16-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, R. D. Koster, W. T. Crow, and C. D. Peters-Lidard, 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 15341547, https://doi.org/10.1175/2009JHM1134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurc, S. A., and E. E. Small, 2007: Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resour. Res., 43, W06416, https://doi.org/10.1029/2006WR005011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzoni, S., J. P. Schimel, and A. Porporato, 2012: Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 93, 930938, https://doi.org/10.1890/11-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., S. H. Alemohammad, R. Akbar, A. G. Konings, S. Yueh, and D. Entekhabi, 2017a: The global distribution and dynamics of surface soil moisture. Nat. Geosci., 10, 100104, https://doi.org/10.1038/ngeo2868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., W. Wang, B. Peng, R. Akbar, D. Gianotti, H. Lu, M. Pan, and D. Entekhabi, 2017b: Global characterization of surface soil moisture drydowns. Geophys. Res. Lett., 44, 36823690, https://doi.org/10.1002/2017GL072819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, N., and D. S. G. Thomas, Eds., 1992: World Atlas of Desertification. Arnold, 69 pp.

  • NCAR, 2017: The Climate Data Guide: CPC Unified gauge-based analysis of global daily precipitation. NCAR, https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation.

  • NOAA, 2017: State of the Climate. NOAA/NCEI, accessed 20 October 2017, https://www.ncdc.noaa.gov/sotc/drought.

  • O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish, 2016: SMAP enhanced L3 radiometer global daily 9 km EASE-Grid soil moisture, version 1. NSIDC, accessed September 2017, http://nsidc.org/data/SPL3SMP_E/versions/1.

  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018: Flash droughts: A review and assessment of the challenges imposed by rapid onset droughts in the United States. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-17-0149.1, in press.

    • Crossref
    • Export Citation
  • Qiu, J., W. T. Crow, G. S. Nearing, X. Mo, and S. Liu, 2014: The impact of vertical measurement depth on the information content of soil moisture times series data. Geophys. Res. Lett., 41, 49975004, https://doi.org/10.1002/2014GL060017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, J., W. T. Crow, and G. S. Nearing, 2016: The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation. J. Hydrometeor., 17, 24192430, https://doi.org/10.1175/JHM-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, P. Liu, S. P. P. Mahanama, E. G. Njoku, and M. Owe, 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, https://doi.org/10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., W. T. Crow, R. D. Koster, H. O. Sharif, and S. P. P. Mahanama, 2008: Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett., 35, L01404, https://doi.org/10.1029/2007GL031986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., and A. Porporato, 2007: Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics. Cambridge University Press, 464 pp.

  • Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and J. Bloomfield, 2002: Increased crop damage in the US from excess precipitation under climate change. Global Environ. Change, 12, 197202, https://doi.org/10.1016/S0959-3780(02)00008-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., L. Jarlan, J.-C. Calvet, F. Bouyssel, and P. De Rosnay, 2007: From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeor., 8, 194206, https://doi.org/10.1175/JHM571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleem, J. A., and G. D. Salvucci, 2002: Comparison of soil wetness indices for inducing functional similarity of hydrologic response across sites in Illinois. J. Hydrometeor., 3, 8091, https://doi.org/10.1175/1525-7541(2002)003<0080:COSWIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., 2001: Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour. Res., 37, 13571365, https://doi.org/10.1029/2000WR900336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwingshackl, C., M. Hirschi, and S. I. Seneviratne, 2017: Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. J. Climate, 30, 71057124, https://doi.org/10.1175/JCLI-D-16-0727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., and Coauthors, 2016: SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophys. Res. Lett., 43, 80688075, https://doi.org/10.1002/2016GL069946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., E. E. Small, and B. Livneh, 2018: Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model. Hydrol. Earth Syst. Sci., 22, 16491663, https://doi.org/10.5194/hess-2017-338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S. E., and G. D. Salvucci, 2014: A new approach for validating satellite estimates of soil moisture using large-scale precipitation: Comparing AMSR-E products. Remote Sens. Environ., 142, 207222, https://doi.org/10.1016/j.rse.2013.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., H. A. Moreno, G. Mascaro, J. C. Rodriguez, C. J. Watts, J. Garatuza-Payan, and R. L. Scott, 2008: Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett., 35, L22403, https://doi.org/10.1029/2008GL036001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., G. Lemoine, and H. Rott, 1999: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 191207, https://doi.org/10.1016/S0034-4257(99)00036-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2016: Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Sci. Rep., 6, 39748, https://doi.org/10.1038/srep39748.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3124 1292 93
PDF Downloads 1696 365 15