• Abramowitz, G., 2012: Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci. Model Dev., 5, 819827, https://doi.org/10.5194/gmd-5-819-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., E. E. Hardy, J. T. Roach, and R. E Witmer, 1976: A land use and land cover classification system for use with remote sensor data. Geological Survey Professional Paper 964, 28 pp., https://pubs.usgs.gov/pp/0964/report.pdf.

    • Crossref
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, Springer, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48.

    • Crossref
    • Export Citation
  • Bastidas, L. A., H. V. Gupta, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang, 1999: Sensitivity analysis of a land surface scheme using multicriteria methods. J. Geophys. Res., 104, 19 48119 490, https://doi.org/10.1029/1999JD900155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, https://doi.org/10.1175/JHM-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River basin. J. Geophys. Res. Atmos., 119, 2338, https://doi.org/10.1002/2013JD020792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807, https://doi.org/10.1175/2011WAF2222455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421, https://doi.org/10.1023/A:1000531001463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Frivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, https://doi.org/10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., and Coauthors, 2015: Computationally inexpensive identification of noninformative model parameters by sequential screening. Water Resour. Res., 51, 64176441, https://doi.org/10.1002/2015WR016907/full.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., J. Mai, L. Samaniego, M. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, J., and P. J. Curran, 2004: The MERIS terrestrial chlorophyll index. Int. J. Remote Sens., 25, 54035413, https://doi.org/10.1080/0143116042000274015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233344, https://doi.org/10.1256/qj.05.137.

  • Demaria, E. M., B. Nijssen, and T. Wagener, 2007: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res., 112, D11113, https://doi.org/10.1029/2006JD007534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, F., M. Chen, S. Plummer, and J. Pisek, 2006: Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens., 44, 22192229, https://doi.org/10.1109/TGRS.2006.872100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Csarey, 2005: Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agric. For. Meteor., 128, 3355, https://doi.org/10.1016/j.agrformet.2004.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 28232836, https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didan, K., and A. Huete, 2006: MODIS vegetation index product series collection 5 change summary. USGS Doc., 17 pp., https://lpdaac.usgs.gov/sites/default/files/public/files/MOD13_VI_C5_Changes_Document_06_28_06.pdf.

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elbers, J. A., C. M. Jacobs, B. Kruijt, W. W. Jans, and E. J. Moors, 2011: Assessing the uncertainty of estimated annual totals of net ecosystem productivity: A practical approach applied to a mid latitude temperate pine forest. Agric. For. Meteor., 151, 18231830, https://doi.org/10.1016/j.agrformet.2011.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 18521867, https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, https://doi.org/10.1007/BF00386231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, A., and Coauthors, 2000: Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agric. For. Meteor., 101, 113129, https://doi.org/10.1016/S0168-1923(99)00168-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulden, L. E., and Z.-L. Yang, 2006: Development of species-based, regional emission capacities for simulation of biogenic volatile organic compound emissions in land source models: An example from Texas, USA. Atmos. Environ., 40, 14641479, https://doi.org/10.1016/j.atmosenv.2005.10.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanan, N., N. Boulain, C. Williams, R. Scholes, and S. Archibald, 2011: Functional convergence in ecosystem carbon exchange in adjacent savanna vegetation types of the Kruger National Park, South Africa. Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales, CRC Press, 77–97.

    • Crossref
    • Export Citation
  • Hao, Z., A. AghaKouchak, N. Nakhjiri, and A. Farahmand, 2014: Global integrated drought monitoring and prediction system. Sci. Data, 1, 140001, https://doi.org/10.1038/sdata.2014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, J. D., J. B. Kollat, P. M. Reed, and T. Wagener, 2013: Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol. Earth Syst. Sci., 17, 28932903, https://doi.org/10.5194/hess-17-2893-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., L. A. Bastidas, H. V. Gupta, S. Sorooshian, K. Mitchell, and W. Emmerich, 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6, 6884, https://doi.org/10.1175/JHM-402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., L. A. Bastidas, H. V. Gupta, and S. Sorooshian, 2006: Evaluating model performance and parameter behavior for varying levels of land surface model complexity. Water Resour. Res., 42, W08430, https://doi.org/10.1029/2005WR004440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, T., Y. Zhu, H. , E. Sudicky, Z. Yu, and F. Ouyangs, 2015: Parameter sensitivity analysis and optimization of Noah land surface model with field measurements from Huaihe River Basin, China. Stochastic Environ. Res. Risk Assess., 29, 13831401, https://doi.org/10.1007/s00477-015-1033-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, Z., M. Huang, L. R. Leung, G. Lin, and D. M. Ricciuto, 2012: Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. J. Geophys. Res., 117, D15108, https://doi.org/10.1029/2012JD017521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huete, A. R., 1988: A soil-adjusted vegetation index (SAVI). Remote Sens. Environ., 25, 295309, https://doi.org/10.1016/0034-4257(88)90106-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasechko, S., Z. D. Sharp, J. J. Gibson, S. J. Birks, Y. Yi, and P. J. Fawcett, 2013: Terrestrial water fluxes dominated by transpiration. Nature, 496, 347350, https://doi.org/10.1038/nature11983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., A. R. Huete, K. Didan, and T. Miura, 2008: Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ., 112, 38333845, https://doi.org/10.1016/j.rse.2008.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, https://doi.org/10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, K. W. Harrison, C. D. Peters-Lidard, S. Yatheendradas, and J. A. Santanello, 2012: A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, https://doi.org/10.1029/2010WR010261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. S. Nearing, and M. F. Jasinski, 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 44634478, https://doi.org/10.5194/hess-19-4463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, https://doi.org/10.1016/0921-8181(95)00046-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., M. P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego, G. Abramowitz, and H. Gupta, 2015: Are we unnecessarily constraining the agility of complex process‐based models? Water Resour. Res., 51, 716728, https://doi.org/10.1002/2014WR015820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2004: Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys. Res., 109, D23111, https://doi.org/10.1029/2004JD004884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937952, https://doi.org/10.1175/JHM538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple TOPMODEL‐based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, https://doi.org/10.1029/2005JD006111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Pielke, R. A., T. J. Lee, J. H. Copeland, J. L. Eastman, C. L. Ziegler, and C. A. Finley, 1997: Use of USGS-provided data to improve weather and climate simulations. Ecol. Appl., 7, 321, https://doi.org/10.2307/2269403.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J. T., 1994: Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model. J. Climate, 7, 18561869, https://doi.org/10.1175/1520-0442(1994)007<1856:ATSOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rakovec, O., M. C. Hill, M. P. Clark, A. H. Weerts, A. J. Teuling, and R. Uijlenhoet, 2014: Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models. Water Resour. Res., 50, 409426, https://doi.org/10.1002/2013WR014063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Razavi, S., and H. V. Gupta, 2015: A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory. Water Resour. Res., 52, 423439, https://doi.org/10.1002/2015WR017558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2008: Data assimilation methods in the Earth sciences. Adv. Water Resour., 31, 14111418, https://doi.org/10.1016/j.advwatres.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosero, E., Z.-L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and G.-Y. Niu, 2010: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J. Geophys. Res., 115, D03106, https://doi.org/10.1029/2009JD012035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosolem, R., H. V. Gupta, W. J. Shuttleworth, L. G. G. Gonçalves, and X. Zeng, 2013: Towards a comprehensive approach to parameter estimation in land surface parameterization schemes. Hydrol. Processes, 27, 20752097, https://doi.org/10.1002/hyp.9362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddell, B. L., R. Yu, M. Kang, and D. L. Childers, 2016: Seasonally varied controls of climate and phenophase on terrestrial carbon dynamics: Modeling eco-climate system state using Dynamical Process Networks. Landscape Ecol., 31, 165180, https://doi.org/10.1007/s10980-015-0253-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004: A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547560, https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltelli, A., K. Chan, and E. M. Scott, 2009: Sensitivity Analysis. Wiley, 494 pp.

  • Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suni, T., and Coauthors, 2003: Long-term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern Finland, 1996–2001. Boreal Environ. Res., 8 (4), 287302.

    • Search Google Scholar
    • Export Citation
  • Veenendaal, E. M., O. Kolle, and J. Lloyd, 2004: Seasonal variation in energy fluxes and carbon dioxide exchange for a broad‐leaved semi‐arid savanna (Mopane woodland) in Southern Africa. Global Change Biol., 10, 318328, https://doi.org/10.1111/j.1365-2486.2003.00699.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11, 111133, https://doi.org/10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, J. E., S. M. Howard, L. Yang, C. R. Larson, B. K. Wylie, and N. Van Driel, 2001: Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sens., 67 (6), 650662.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. J. Zeng, and C. A. Schlosser, 1996: SSiB and its sensitivity to soil properties—A case study using HAPEX-Mobilhy data. Global Planet. Change, 13, 183194, https://doi.org/10.1016/0921-8181(95)00045-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and R. E. Dickinson, 1996: Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. Global Planet. Change, 13, 117134, https://doi.org/10.1016/0921-8181(95)00041-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353373, https://doi.org/10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2013: Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens., 5, 927948, https://doi.org/10.3390/rs5020927.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1335 925 3
PDF Downloads 1392 958 3

Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation

View More View Less
  • 1 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, and Science Applications International Corporation, McLean, Virginia
  • | 2 Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama
  • | 3 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, and Science Applications International Corporation, McLean, Virginia
  • | 4 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, and Earth Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 5 Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

The Noah land surface model with multiple parameterization options (Noah-MP) includes a routine for the dynamic simulation of vegetation carbon assimilation and soil carbon decomposition processes. To use remote sensing observations of vegetation to constrain simulations from this model, it is necessary first to understand the sensitivity of the model to its parameters. This is required for efficient parameter estimation, which is both a valuable way to use observations and also a first or concurrent step in many state-updating data assimilation procedures. We use variance decomposition to assess the sensitivity of estimates of sensible heat, latent heat, soil moisture, and net ecosystem exchange made by certain standard Noah-MP configurations that include the dynamic simulation of vegetation and carbon to 43 primary user-specified parameters. This is done using 32 years’ worth of data from 10 international FluxNet sites. Findings indicate that there are five soil parameters and six (or more) vegetation parameters (depending on the model configuration) that act as primary controls on these states and fluxes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0205.s1.

Corresponding author: Kristi R. Arsenault, kristi.r.arsenault@nasa.gov

Abstract

The Noah land surface model with multiple parameterization options (Noah-MP) includes a routine for the dynamic simulation of vegetation carbon assimilation and soil carbon decomposition processes. To use remote sensing observations of vegetation to constrain simulations from this model, it is necessary first to understand the sensitivity of the model to its parameters. This is required for efficient parameter estimation, which is both a valuable way to use observations and also a first or concurrent step in many state-updating data assimilation procedures. We use variance decomposition to assess the sensitivity of estimates of sensible heat, latent heat, soil moisture, and net ecosystem exchange made by certain standard Noah-MP configurations that include the dynamic simulation of vegetation and carbon to 43 primary user-specified parameters. This is done using 32 years’ worth of data from 10 international FluxNet sites. Findings indicate that there are five soil parameters and six (or more) vegetation parameters (depending on the model configuration) that act as primary controls on these states and fluxes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0205.s1.

Corresponding author: Kristi R. Arsenault, kristi.r.arsenault@nasa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 2.21 MB)
Save