Precipitation Sensitivity to the Uncertainty of Terrestrial Water Flow in WRF-Hydro: An Ensemble Analysis for Central Europe

Joël Arnault Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Joël Arnault in
Current site
Google Scholar
PubMed
Close
,
Thomas Rummler Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Thomas Rummler in
Current site
Google Scholar
PubMed
Close
,
Florian Baur Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by Florian Baur in
Current site
Google Scholar
PubMed
Close
,
Sebastian Lerch Institute for Stochastics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Search for other papers by Sebastian Lerch in
Current site
Google Scholar
PubMed
Close
,
Sven Wagner Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Sven Wagner in
Current site
Google Scholar
PubMed
Close
,
Benjamin Fersch Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Benjamin Fersch in
Current site
Google Scholar
PubMed
Close
,
Zhenyu Zhang Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Zhenyu Zhang in
Current site
Google Scholar
PubMed
Close
,
Noah Kerandi Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Noah Kerandi in
Current site
Google Scholar
PubMed
Close
,
Christian Keil Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by Christian Keil in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation is affected by soil moisture spatial variability. However, this variability is not well represented in atmospheric models that do not consider soil moisture transport as a three-dimensional process. This study investigates the sensitivity of precipitation to the uncertainty in the representation of terrestrial water flow. The tools used for this investigation are the Weather Research and Forecasting (WRF) Model and its hydrologically enhanced version, WRF-Hydro, applied over central Europe during April–October 2008. The model grid is convection permitting, with a horizontal spacing of 2.8 km. The WRF-Hydro subgrid employs a 280-m resolution to resolve lateral terrestrial water flow. A WRF/WRF-Hydro ensemble is constructed by modifying the parameter controlling the partitioning between surface runoff and infiltration and by varying the planetary boundary layer (PBL) scheme. This ensemble represents terrestrial water flow uncertainty originating from the consideration of resolved lateral flow, terrestrial water flow uncertainty in the vertical direction, and turbulence parameterization uncertainty. The uncertainty of terrestrial water flow noticeably increases the normalized ensemble spread of daily precipitation where topography is moderate, surface flux spatial variability is high, and the weather regime is dominated by local processes. The adjusted continuous ranked probability score shows that the PBL uncertainty improves the skill of an ensemble subset in reproducing daily precipitation from the E-OBS observational product by 16%–20%. In comparison to WRF, WRF-Hydro improves this skill by 0.4%–0.7%. The reproduction of observed daily discharge with Nash–Sutcliffe model efficiency coefficients generally above 0.3 demonstrates the potential of WRF-Hydro in hydrological science.

Current affiliation: Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joël Arnault, joel.arnault@kit.edu

This article is included in the Waves to Weather (W2W) Special Collection.

Abstract

Precipitation is affected by soil moisture spatial variability. However, this variability is not well represented in atmospheric models that do not consider soil moisture transport as a three-dimensional process. This study investigates the sensitivity of precipitation to the uncertainty in the representation of terrestrial water flow. The tools used for this investigation are the Weather Research and Forecasting (WRF) Model and its hydrologically enhanced version, WRF-Hydro, applied over central Europe during April–October 2008. The model grid is convection permitting, with a horizontal spacing of 2.8 km. The WRF-Hydro subgrid employs a 280-m resolution to resolve lateral terrestrial water flow. A WRF/WRF-Hydro ensemble is constructed by modifying the parameter controlling the partitioning between surface runoff and infiltration and by varying the planetary boundary layer (PBL) scheme. This ensemble represents terrestrial water flow uncertainty originating from the consideration of resolved lateral flow, terrestrial water flow uncertainty in the vertical direction, and turbulence parameterization uncertainty. The uncertainty of terrestrial water flow noticeably increases the normalized ensemble spread of daily precipitation where topography is moderate, surface flux spatial variability is high, and the weather regime is dominated by local processes. The adjusted continuous ranked probability score shows that the PBL uncertainty improves the skill of an ensemble subset in reproducing daily precipitation from the E-OBS observational product by 16%–20%. In comparison to WRF, WRF-Hydro improves this skill by 0.4%–0.7%. The reproduction of observed daily discharge with Nash–Sutcliffe model efficiency coefficients generally above 0.3 demonstrates the potential of WRF-Hydro in hydrological science.

Current affiliation: Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joël Arnault, joel.arnault@kit.edu

This article is included in the Waves to Weather (W2W) Special Collection.

Save
  • Anyah, R. O., C. P. Weaver, G. Miguez-Macho, Y. Fan, and A. Robock, 2008: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J. Geophys. Res., 113, D07103, https://doi.org/10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Arino, O., P. Ramos, J. Jose, V. Kalogirou, S. Bontemps, P. Defourny, and E. Van Bogaert, 2012: Global Land Cover Map for 2009 (GlobCover 2009). European Space Agency/Université catholique de Louvain, https://doi.org/10.1594/PANGAEA.787668.

    • Crossref
    • Export Citation
  • Arnault, J., S. Wagner, T. Rummler, B. Fersch, J. Bliefernicht, S. Andresen, and H. Kunstmann, 2016: Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa. J. Hydrometeor., 17, 14891516, https://doi.org/10.1175/JHM-D-15-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and Coauthors, 2011: Initiation of deep convection at marginal instability in an ensemble of mesoscale models: A case-study from COPS. Quart. J. Roy. Meteor. Soc., 137, 118136, https://doi.org/10.1002/qj.707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronstert, A., and Coauthors, 2007: Multi-scale modelling of land-use change and river training effects on floods in the Rhine basin. River Res. Appl., 23, 11021125, https://doi.org/10.1002/rra.1036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33, 13231340, https://doi.org/10.1175/1520-0450(1994)033<1323:TIOLSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a cloud-resolving simulation of the genesis of a mesoscale convective system to horizontal heterogeneities in soil moisture initialization. J. Hydrometeor., 5, 934958, https://doi.org/10.1175/1525-7541(2004)005<0934:SOACSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., C. M. Taylor, and A. J. Thorpe, 2004: Feedback between the land surface and rainfall at convective length scales. J. Hydrometeor., 5, 625639, https://doi.org/10.1175/1525-7541(2004)005<0625:FBTLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csiszar, I., and G. Gutman, 1999: Mapping global land surface albedo from NOAA/AVHRR. J. Geophys. Res., 104, 62156228, https://doi.org/10.1029/1998JD200090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jager, A. L., and J. V. Vogt, 2010: Development and demonstration of a structured hydrological feature coding system for Europe. Hydrol. Sci. J., 55, 661675, https://doi.org/10.1080/02626667.2010.490786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. C. Craig, S. L. Gray, P. A. Clark, and M. E. B. Gray, 2006: Mesoscale simulations of organized convection: Importance of convective equilibrium. Quart. J. Roy. Meteor. Soc., 132, 737756, https://doi.org/10.1256/qj.04.84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012: Harmonized World Soil Database (version 1.2). FAO, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.

  • Ferro, C. A. T., D. S. Richardson, and A. P. Weigel, 2008: On the effect of ensemble size on the discrete and continuous ranked probability scores. Met. Appl, 15, 1924, https://doi.org/10.1002/met.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fricker, T. E., C. A. T. Ferro, and D. B. Stephenson, 2013: Three recommendations for evaluating climate predictions. Met. Appl, 20, 246255, https://doi.org/10.1002/met.1409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501514, https://doi.org/10.1002/qj.1976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, https://doi.org/10.1016/j.atmosres.2010.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, https://doi.org/10.1198/016214506000001437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. Yu, and D. N. Yates, 2015: The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp., http://www.ral.ucar.edu/projects/wrf_hydro/.

  • GRDC, 2013: Tenth meeting of the GRDC Steering Committee, 15–17 June 2011, Koblenz, Germany. GRDC Rep. 42, Global Runoff Data Centre, 31 pp., https://doi.org/10.5675/GRDC_Report_42.

    • Crossref
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, https://doi.org/10.1080/014311698215333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., D. Lüthi, and C. Schär, 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134, 20952107, https://doi.org/10.1175/MWR3176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. E., and C. S. Woodward, 2001: Preconditioning Newton-Krylov methods for variable saturated flow. Adv. Water Resour., 24, 763774, https://doi.org/10.1016/S0309-1708(00)00075-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, C., and G. C. Craig, 2011: Regime-dependent forecast uncertainty of convective precipitation. Meteor. Z., 20, 145151, https://doi.org/10.1127/0941-2948/2011/0219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective adjustment time-scale as indicator of predictability of convective precipitation. Quart. J. Roy. Meteor. Soc., 140, 480490, https://doi.org/10.1002/qj.2143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerandi, N., J. Arnault, P. Laux, S. Wagner, J. Kitheka, and H. Kunstmann, 2018: Joint atmospheric-terrestrial water balances for East Africa: A WRF-Hydro case study for the upper Tana River basin. Theor. Appl. Climatol., 131, 1337, https://doi.org/10.1007/s00704-017-2050-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, https://doi.org/10.1002/qj.2238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., F. Chen, M. Barlage, M. B. Ek, and D. Niyogi, 2014: Assessing impacts of integrating MODIS vegetation data in the Weather Research and Forecasting (WRF) Model coupled to two different canopy-resistance approaches. J. Appl. Meteor. Climatol., 53, 13621380, https://doi.org/10.1175/JAMC-D-13-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. A. D., J. H. Christensen, M. Drews, M. B. Butts, and J. C. Refsgaard, 2016: Local control on precipitation in a fully coupled climate-hydrology model. Sci. Rep., 6, 22927, https://doi.org/10.1038/srep22927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerch, S., T. L. Thorarinsdottir, F. Ravazzolo, and T. Gneiting, 2017: Forecaster’s dilemma: Extreme events and forecast evaluation. Stat. Sci., 32, 106127, https://doi.org/10.1214/16-STS588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohre, M., P. Sibbertsen, and T. Konning, 2003: Modeling water flow of the Rhine River using seasonal long memory. Water Resour. Res., 39, 1132, https://doi.org/10.1029/2002WR001697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871095, https://doi.org/10.1287/mnsc.22.10.1087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., F. K. Chow, and S. J. Kollet, 2007: The groundwater-land-surface-atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Water Resour., 30, 24472466, https://doi.org/10.1016/j.advwatres.2007.05.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., J. K. Lundquist, J. D. Mirocha, S. G. Smith, C. S. Woodward, and A. F. Tompson, 2011: Development of a coupled groundwater-atmosphere model. Mon. Wea. Rev., 139, 96116, https://doi.org/10.1175/2010MWR3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2015: ASTER level 1 precision terrain corrected registered at-sensor radiance, version 3. LP DAAC, accessed 11 May 2015, https://doi.org/10.5067/ASTER/AST_L1T.003.

    • Crossref
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and Coauthors, 2015: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci., 19, 209223, https://doi.org/10.5194/hess-19-209-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, https://doi.org/10.1029/1999RG000072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, M., M. Sulis, and S. J. Kollet, 2015: The subsurface–land surface–atmosphere connection under convective conditions. Adv. Water Resour., 83, 240249, https://doi.org/10.1016/j.advwatres.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, M., C. Hohenegger, and C. C. van Heerwaarden, 2014: The influence of land surface heterogeneities on cloud size development. Mon. Wea. Rev., 142, 38303846, https://doi.org/10.1175/MWR-D-13-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senatore, A., G. Mendicino, D. J. Gochis, W. Yu, D. N. Yates, and H. Kunstmann, 2015: Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst., 7, 16931715, https://doi.org/10.1002/2015MS000510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer, 2014: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow. Mon. Wea. Rev., 142, 34663483, https://doi.org/10.1175/MWR-D-14-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smiatek, G., 2014: Time invariant boundary data of regional climate models COSMO-CLM and WRF and their application in COSMO-CLM. J. Geophys. Res. Atmos., 119, 73327347, https://doi.org/10.1002/2013JD021267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahler, A. N., 1957: Quantitative analysis of watershed geomorphology. Trans. Amer. Geophys. Union, 38, 913920, https://doi.org/10.1029/tr038i006p00913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, https://doi.org/10.1029/2007GL030572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, S., B. Fersch, F. Yuan, Z. Yu, and H. Kunstmann, 2016: Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Development, application, and analysis of WRF-HMS. Water Resour. Res., 52, 31873211, https://doi.org/10.1002/2015WR018185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134, 241260, https://doi.org/10.1002/qj.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The advanced regional prediction system (ARPS): A multi-scale non-hydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., D. Pollard, and L. Cheng, 2006: On continental-scale hydrologic simulations with a coupled hydrologic model. J. Hydrol., 331, 110124, https://doi.org/10.1016/j.jhydrol.2006.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yucel, I., A. Onen, K. K. Yilmaz, and D. Gochis, 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol., 523, 4966, https://doi.org/10.1016/j.jhydrol.2015.01.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmer, M., G. C. Craig, C. Keil, and H. Wernli, 2011: Classification of precipitation events with a convective response timescale and their forecasting characteristics. Geophys. Res. Lett., 38, L05802, https://doi.org/10.1029/2010GL046199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zink, M., R. Kumar, M. Cuntz, and L. Samaniego, 2017: A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty. Hydrol. Earth Syst. Sci., 21, 17691790, https://doi.org/10.5194/hess-21-1769-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2824 819 56
PDF Downloads 1439 305 28