Track and Circulation Analysis of Tropical and Extratropical Cyclones that Cause Strong Precipitation and Streamflow Events in the New York City Watershed

Katherine L. Towey Program in Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, New York

Search for other papers by Katherine L. Towey in
Current site
Google Scholar
PubMed
Close
,
James F. Booth Department of Earth and Atmospheric Sciences, City College of the City University of New York, and Program in Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, New York

Search for other papers by James F. Booth in
Current site
Google Scholar
PubMed
Close
,
Allan Frei Department of Geography, Hunter College, and Program in Earth and Environmental Sciences, The Graduate Center, and CUNY Institute for Sustainable Cities, City University of New York, New York, New York

Search for other papers by Allan Frei in
Current site
Google Scholar
PubMed
Close
, and
Mark R. Sinclair Department of Applied Aviation Sciences, Embry–Riddle Aeronautical University, Prescott, Arizona

Search for other papers by Mark R. Sinclair in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The top 100 basin-scale 1-day precipitation, multiday precipitation, and 1-day streamflow events from 1950 to 2012 are examined for the Ashokan reservoir, a key water source for New York City. Through a cyclone association algorithm, extratropical cyclones (ETCs) are found to be associated with the majority of the top 100 precipitation and streamflow events. Tropical cyclones (TCs) generate the second-most top 100 one-day and multiday precipitation events, with more than two-thirds of these TCs having undergone extratropical transition. Furthermore, TCs that pass over the region are approximately 7 and 4 times more likely to generate a top 100 one-day precipitation and one-day streamflow event, respectively, than ETCs. Lagrangian cyclone track analysis shows cool season ETCs take a more meridional path compared to warm season ETCs. A composite analysis shows that for the top 100 one-day precipitation events, ETCs have relatively less moisture but stronger upper-level support than TCs. Due in part to TCs, heavy precipitation events occur more often in the warm season, whereas high streamflow events occur mainly in the cool season. Despite this difference, approximately 43% of the top 100 events, which represent many of the very strongest events, overlap for all three metrics. While high temperature and specific humidity anomalies accompany all top 100 events, the magnitude of the anomalies is greatest for isolated streamflow events. This analysis provides a reference to forecasters and water managers regarding the relative and synoptic-scale behavior of different storm types for isolated and concurrent precipitation and streamflow events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: K. L. Towey, ktowey@gradcenter.cuny.edu

Abstract

The top 100 basin-scale 1-day precipitation, multiday precipitation, and 1-day streamflow events from 1950 to 2012 are examined for the Ashokan reservoir, a key water source for New York City. Through a cyclone association algorithm, extratropical cyclones (ETCs) are found to be associated with the majority of the top 100 precipitation and streamflow events. Tropical cyclones (TCs) generate the second-most top 100 one-day and multiday precipitation events, with more than two-thirds of these TCs having undergone extratropical transition. Furthermore, TCs that pass over the region are approximately 7 and 4 times more likely to generate a top 100 one-day precipitation and one-day streamflow event, respectively, than ETCs. Lagrangian cyclone track analysis shows cool season ETCs take a more meridional path compared to warm season ETCs. A composite analysis shows that for the top 100 one-day precipitation events, ETCs have relatively less moisture but stronger upper-level support than TCs. Due in part to TCs, heavy precipitation events occur more often in the warm season, whereas high streamflow events occur mainly in the cool season. Despite this difference, approximately 43% of the top 100 events, which represent many of the very strongest events, overlap for all three metrics. While high temperature and specific humidity anomalies accompany all top 100 events, the magnitude of the anomalies is greatest for isolated streamflow events. This analysis provides a reference to forecasters and water managers regarding the relative and synoptic-scale behavior of different storm types for isolated and concurrent precipitation and streamflow events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: K. L. Towey, ktowey@gradcenter.cuny.edu
Save
  • Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the northeast United States. J. Hydrometeor., 16, 25372557, https://doi.org/10.1175/JHM-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski Jr., 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Climate Dyn., 50, 18191839, https://doi.org/10.1007/s00382-017-3724-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, https://doi.org/10.1029/2010GL046258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., G. Tselioudis, and W. B. Rossow, 2016: A new climatology for investigating storm influences in and on the extratropics. J. Appl. Meteor. Climatol., 55, 12871303, https://doi.org/10.1175/JAMC-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., H. E. Reider, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high-wind events in the northeastern United States. J. Appl. Meteor. Climatol., 54, 18711885, https://doi.org/10.1175/JAMC-D-14-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., H. E. Reider, and Y. Kushnir, 2016: Comparing hurricane and extratropical storm surge for the Mid-Atlantic and Northeast coast of the United States for 1979–2013. Environ. Res. Lett., 11, 094004, https://doi.org/10.1088/1748-9326/11/9/094004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 79110 801, https://doi.org/10.1002/jgrd.50852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 209 pp.

    • Crossref
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumanski, S., J. W. Pomeroy, and C. J. Westbrook, 2015: Hydrological regime changes in a Canadian Prairie basin. Hydrol. Processes, 29, 38933904, https://doi.org/10.1002/hyp.10567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part 1: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., 1988: Numerical models of the raingauge exposure problem, field experiments, and an improved collector design. Quart. J. Roy. Meteor. Soc., 114, 14851516, https://doi.org/10.1002/qj.49711448407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, A., and P. Kelly-Voicu, 2017: Hurricane Irene and Tropical Storm Lee: How unusual were they in the Catskill Mountains? J. Extreme Events, 4, 1750009, https://doi.org/10.1142/S2345737617500099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, A., K. E. Kunkel, and A. Matonse, 2015: The seasonal nature of extreme hydrological events in the northeastern United States. J. Hydrometeor., 16, 20652085, https://doi.org/10.1175/JHM-D-14-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, https://doi.org/10.1175/2010MWR3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., and R. W. Katz, 2016: extRemes 2.0: An extreme value analysis package in R. J. Stat. Software, 72, 139, https://doi.org/10.18637/jss.v072.i08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and D. R. Legates, 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75, 215227, https://doi.org/10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, https://doi.org/10.1002/qj.2528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivancic, T. J., and S. B. Shaw, 2015: Examining why trends in very high precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133, 681693, https://doi.org/10.1007/s10584-015-1476-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, https://doi.org/10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquardt Collow, A. B., M. G. Bosilovich, and R. D. Koster, 2016: Large-scale influences on summertime extreme precipitation in the northeastern United States. J. Hydrometeor., 17, 30453061, https://doi.org/10.1175/JHM-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matonse, A. H., and A. Frei, 2013: A seasonal shift in the frequency of extreme hydrological events in southern New York state. J. Climate, 26, 95779593, https://doi.org/10.1175/JCLI-D-12-00810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matonse, A. H., D. C. Pierson, A. Frei, M. S. Zion, A. Anandhi, E. Schneiderman, and B. Wright, 2013: Investigating the impact of climate change on New York City’s primary water supply. Climatic Change, 116, 437456, https://doi.org/10.1007/s10584-012-0515-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, and J. R. Gyakum, 2009: Synoptic-scale characteristics and precursors of cool-season precipitation events at St. John’s, Newfoundland, 1979–2005. Wea. Forecasting, 24, 667689, https://doi.org/10.1175/2008WAF2222167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, J. R. Gyakum, and G. Dookhie, 2014: Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Quebec. Wea. Forecasting, 29, 419444, https://doi.org/10.1175/WAF-D-13-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, and E. M. Sukovich, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, J., U. Lall, Y. Kushnir, A. W. Robertson, and R. Seager, 2013: Dynamical structure of extreme floods in the U.S. Midwest and the United Kingdom. J. Hydrometeor., 14, 485504, https://doi.org/10.1175/JHM-D-12-059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, B., and B. C. Burrell, 2016: The April–May 2008 flood event in the Saint John River Basin: Causes, assessment and damages. Can. Water Resour. J., 41, 118128, https://doi.org/10.1080/07011784.2015.1009950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NYCDEP, 2018: Ashokan. Accessed 21 May 2018, http://www.nyc.gov/html/dep/html/watershed_protection/ashokan.shtml.

  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradhanang, S. M., A. Anandhi, R. Mukundan, M. S. Zion, D. C. Pierson, E. M. Schneiderman, A. Matonse, and A. Frei, 2011: Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed, New York, USA. Hydrol. Processes, 25, 32683277, https://doi.org/10.1002/hyp.8171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradhanang, S. M., A. Frei, M. Zion, E. M. Schneiderman, T. S. Steenhuis, and D. Pierson, 2013: Rain-on-snow runoff events in New York. Hydrol. Processes, 27, 30353049, https://doi.org/10.1002/hyp.9864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2014: R: A language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org/.

  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Pederson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2012: The 1960s drought and the subsequent shift to a wetter climate in the Catskill Mountains region of the New York City watershed. J. Climate, 25, 67216742, https://doi.org/10.1175/JCLI-D-11-00518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. WMO Operational Hydrology Rep. 21, 91 pp.

  • Sinclair, M. R., 2002: Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130, 590609, https://doi.org/10.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teale, N. G., S. M. Quiring, and T. W. Ford, 2017: Association of synoptic-scale atmospheric patterns with flash flooding in watersheds of the New York City water supply system. Int. J. Climatol., 37, 358370, https://doi.org/10.1002/joc.4709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., H. Kim, S. Kanae, and T. Oki, 2017: Relative contributions of weather systems to mean and extreme global precipitation. J. Geophys. Res. Atmos., 122, 152167, https://doi.org/10.1002/2016JD025222.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 778 417 103
PDF Downloads 428 123 2