Vapor Condensation in Rice Fields and Its Contribution to Crop Evapotranspiration in the Subtropical Monsoon Climate of China

Xiaoyin Liu College of Agricultural Engineering, and State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu, China

Search for other papers by Xiaoyin Liu in
Current site
Google Scholar
PubMed
Close
,
Junzeng Xu College of Agricultural Engineering, and State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu, China

Search for other papers by Junzeng Xu in
Current site
Google Scholar
PubMed
Close
,
Shihong Yang College of Agricultural Engineering, and State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu, China

Search for other papers by Shihong Yang in
Current site
Google Scholar
PubMed
Close
,
Jiangang Zhang Kunshan Water Conservancy Engineering Quality and Safety Supervision and Water Technology Popularization Station, Kunshan, Jiangsu, China

Search for other papers by Jiangang Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yijiang Wang Kunshan Water Conservancy Engineering Quality and Safety Supervision and Water Technology Popularization Station, Kunshan, Jiangsu, China

Search for other papers by Yijiang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While vapor condensation in arid and semiarid areas has garnered much attention, such information is scarce for humid crop production areas such as rice fields. In a water-saving irrigation (WSI) rice field, high-precision weighed microlysimeters allowed the direct and independent quantification of condensation over plants (Cc) and soil (Cs) through mass balance calculations. The occurrence frequency and rate of Cc generally exceeded that of Cs. Predominantly occurring between sunset and sunrise, particularly between 0400 and 0500 local time, Cc showed an overall maximum rate of 0.096 mm h−1. In contrast, Cs was highest between 0100 and 1100 local time and showed an overall maximum rate of 0.044 mm h−1. The occurrence of Cc, unlike that of Cs, required a surface temperature lower than the ambient temperature or dewpoint. Of 65 rain-free days, Cc and Cs occurred on 60 and 33 days, respectively. Seasonal Cc, Cs, and Cc + Cs were estimated as 32.3, 3.1, and 35.4 mm, respectively, and their contributions to seasonal rice transpiration T, evaporation E, and evapotranspiration (ET) were 9.5%, 1.6%, and 6.7%, respectively. The seasonal Cc + Cs was similar in magnitude to a routine irrigation quota and accounted for 10.8% of rainfall and 14.4% of irrigation in the WSI rice field. Therefore, vapor condensation in rice fields in a subtropical monsoon climate is an important component of the hydrological cycle and cannot be ignored when tabulating the field water balance, calculating field water consumption, or in irrigation scheduling.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junzeng Xu, xjz481@hhu.edu.cn

Abstract

While vapor condensation in arid and semiarid areas has garnered much attention, such information is scarce for humid crop production areas such as rice fields. In a water-saving irrigation (WSI) rice field, high-precision weighed microlysimeters allowed the direct and independent quantification of condensation over plants (Cc) and soil (Cs) through mass balance calculations. The occurrence frequency and rate of Cc generally exceeded that of Cs. Predominantly occurring between sunset and sunrise, particularly between 0400 and 0500 local time, Cc showed an overall maximum rate of 0.096 mm h−1. In contrast, Cs was highest between 0100 and 1100 local time and showed an overall maximum rate of 0.044 mm h−1. The occurrence of Cc, unlike that of Cs, required a surface temperature lower than the ambient temperature or dewpoint. Of 65 rain-free days, Cc and Cs occurred on 60 and 33 days, respectively. Seasonal Cc, Cs, and Cc + Cs were estimated as 32.3, 3.1, and 35.4 mm, respectively, and their contributions to seasonal rice transpiration T, evaporation E, and evapotranspiration (ET) were 9.5%, 1.6%, and 6.7%, respectively. The seasonal Cc + Cs was similar in magnitude to a routine irrigation quota and accounted for 10.8% of rainfall and 14.4% of irrigation in the WSI rice field. Therefore, vapor condensation in rice fields in a subtropical monsoon climate is an important component of the hydrological cycle and cannot be ignored when tabulating the field water balance, calculating field water consumption, or in irrigation scheduling.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junzeng Xu, xjz481@hhu.edu.cn
Save
  • Agam, N., and P. R. Berliner, 2004: Diurnal water content changes in the bare soil of a coastal desert. J. Hydrometeor., 5, 922933, https://doi.org/10.1175/1525-7541(2004)005<0922:DWCCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agam, N., and P. R. Berliner, 2006: Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid Environ., 65, 572590, https://doi.org/10.1016/j.jaridenv.2005.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., www.fao.org/docrep/X0490E/X0490E00.htm.

  • Belder, P., B. Bouman, R. Cabangon, L. Guoan, E. Quilang, L. Yuanhua, J. Spiertz, and T. Tuong, 2004: Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manage., 65, 193210, https://doi.org/10.1016/j.agwat.2003.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben-Asher, J., P. Alpert, and A. Ben-Zvi, 2010: Dew is a major factor affecting vegetation water use efficiency rather than a source of water in the eastern Mediterranean area. Water Resour. Res., 46, W10532, https://doi.org/10.1029/2008WR007484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beysens, D., M. Muselli, V. Nikolayev, R. Narhe, and I. Milimouk, 2005: Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res., 73, 122, https://doi.org/10.1016/j.atmosres.2004.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clus, O., P. Ortega, M. Muselli, I. Milimouk, and D. Beysensal, 2008: Study of dew water collection in humid tropical islands. J. Hydrol., 361, 159171, https://doi.org/10.1016/j.jhydrol.2008.07.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Y., and J. Huang, 2012: A review of researches on efficient agricultural water use in China. Bull. Chin. Acad. Sci., 26 (1), 4853.

    • Search Google Scholar
    • Export Citation
  • Ding, R., S. Kang, F. Li, Y. Zhang, L. Tong, and Q. Sun, 2010: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China. Agric. Water Manage., 98, 8795, https://doi.org/10.1016/j.agwat.2010.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., T. J. Jackson, R. Bindlish, M. H. Cosh, L. Li, and B. K. Hornbuckle, 2009: Passive microwave observations of soil moisture and dew in soil moisture experiments 2005 (SMEX05). Eos, Trans. Amer. Geophys. Union, 90 (Fall Meeting Suppl.), Abstract H11G-05.

  • Evett, S. R., R. C. Schwartz, T. A. Howell, R. Louis Baumhardt, and K. S. Copeland, 2012: Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET? Adv. Water Resour., 50, 7990, https://doi.org/10.1016/j.advwatres.2012.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, D. M., C. Feldhake, F. Takeda, and D. L. Peterson, 1996: The dew component of strawberry evapotranspiration. HortScience, 31 (6), 947950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsmith, G. R., N. J. Matzke, and T. E. Dawson, 2013: The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett., 16, 307314, https://doi.org/10.1111/ele.12039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, A., W. Kuttler, and J. Werner, 2004: Dewfall measurements on Lanzarote, Canary Islands. Meteor. Z., 13, 405412, https://doi.org/10.1127/0941-2948/2004/0013-0405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, A., W. Kuttler, and J. Werner, 2008: Mulching as a means of exploiting dew for arid agriculture? Atmos. Res., 87, 369376, https://doi.org/10.1016/j.atmosres.2007.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanisch, S., C. Lohrey, and A. Buerkert, 2015: Dewfall and its ecological significance in semi-arid coastal south-western Madagascar. J. Arid Environ., 121, 2431, https://doi.org/10.1016/j.jaridenv.2015.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X. M., C. Li, B. Guo, J. X. Ma, M. Ayupa, and Z. S. Chen, 2012: Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China. J. Hydrol., 472–473, 9098, https://doi.org/10.1016/j.jhydrol.2012.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heusinkveld, B. G., S. M. Berkowicz, A. F. G. Jacobs, A. A. M. Holtslag, and W. C. A. M. Hillen, 2006: An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J. Hydrometeor., 7, 825832, https://doi.org/10.1175/JHM523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornbuckle, B. K., A. W. England, M. C. Anderson, and B. J. Viner, 2006: The effect of free water in a maize canopy on microwave emission at 1.4 GHz. Agric. For. Meteor., 138, 180191, https://doi.org/10.1016/j.agrformet.2006.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R., and P. J. Wierenga, 1983: Estimating the soil heat flux from observations of soil temperature near the surface. Soil. Sci. Soc. Amer. J., 47, 1420, https://doi.org/10.2136/sssaj1983.03615995004700010003x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R., P. J. Wierenga, and D. R. Nielsen, 1983: Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil. Sci. Soc. Amer. J., 47, 25, https://doi.org/10.2136/sssaj1983.03615995004700010005x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and L. Moy, 1999: Dew effects on passive microwave observations of land surfaces. Remote Sens. Environ., 70, 129137, https://doi.org/10.1016/S0034-4257(99)00021-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, A. F. G., 1994: Dew formation and the drying process within a maize canopy. Bound.-Layer Meteor., 69, 367378, https://doi.org/10.1007/BF00718125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, A. F. G., B. G. Heusinkveld, and S. M. Berkowicz, 2000: Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int. J. Biometeor., 43, 184190, https://doi.org/10.1007/s004840050007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, A. F. G., B. G. Heusinkveld, and S. M. Berkowicz, 2002: A simple model for potential dewfall in an arid region. Atmos. Res., 64, 285295, https://doi.org/10.1016/S0169-8095(02)00099-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, A. F. G., B. G. Heusinkveld, R. J. Wichink Kruit, and S. M. Berkowicz, 2006: Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resour. Res., 42, W03415, https://doi.org/10.1029/2005WR004055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kabela, E. D., B. K. Hornbuckle, M. H. Cosh, M. C. Anderson, and M. L. Gleason, 2009: Dew frequency, duration, amount and distribution in corn and soybean during SMEX05. Agric. For. Meteor., 149, 1124, https://doi.org/10.1016/j.agrformet.2008.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., M. Fiebig-Wittmaack, C. Meißner, M. Kohler, M. Uriarte, I. Bischoff-Gauß, and E. Gonzales, 2006: The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J. Arid Environ., 65, 420443, https://doi.org/10.1016/j.jaridenv.2005.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, Y., A. Henry, D. Fujita, K. Katsura, N. Kobayashi, and R. Serraj, 2011: Physiological characterization of introgression lines derived from an indica rice cultivar, IR64, adapted to drought and water-saving irrigation. Field Crops Res., 123, 130138, https://doi.org/10.1016/j.fcr.2011.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidron, G. J., I. Herrnstadt, and E. Barzilay, 2002: The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ., 52, 517533, https://doi.org/10.1006/jare.2002.1014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. Y., 2002: Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J. Hydrol., 260, 151160, https://doi.org/10.1016/S0022-1694(01)00605-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. J., J. M. Zeng, C. M. Wang, H. M. Li, and W. P. Duan, 2001: On the relationship between forests and occult precipitation (dew and fog precipitation). Ziran Ziyuan Xuebao, 16 (6), 517575.

    • Search Google Scholar
    • Export Citation
  • Liu, W. J., Y. Zhang, Y. Liu, H. Li, and W. Duan, 2003: Comparison of fog interception at a tropical seasonal rain forest and a rubber plantation in Xishuangbanna, southwest China. Acta Ecol. Sin., 11 (11), 23792386.

    • Search Google Scholar
    • Export Citation
  • Liu, X. Y., J. Z. Xu, S. H. Yang, and J. G. Zhang, 2018: Rice evapotranspiration on at the field and canopy scales under water-saving irrigation. Meteor. Atmos. Phys., 130, 227240, https://doi.org/10.1007/s00703-017-0507-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llorente, I., P. Vilardell, R. Bugiani, I. Gherardi, and E. Montesinos, 2000: Evaluation of BSPcast disease-warning system in reduced fungicide use programs for management of brown spot of pear. Plant Dis., 84, 631637, https://doi.org/10.1094/PDIS.2000.84.6.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • , H. S., Z. B. Yu, Y. H. Zhu, S. Drake, and E. Sudicky, 2011: Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Adv. Water Resour., 34, 395406, https://doi.org/10.1016/j.advwatres.2010.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, W., and J. Goudriaan, 2000: Measuring dew formation and its threshold value for net radiation loss on top leaves in a paddy rice crop by using the dewball: A new and simple instrument. Int. J. Biometeor., 44, 167171, https://doi.org/10.1007/s004840000071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madeira, A. C., T. J. Gillespie, and C. L. Duke, 2001: Effect of wetness on turfgrass canopy reflectance. Agric. For. Meteor., 107, 117130, https://doi.org/10.1016/S0168-1923(00)00230-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malek, E., G. D. McCurdy, and B. Giles, 1999: Dew contribution to the annual water balance in semi-arid desert valleys. J. Arid Environ., 42, 7180, https://doi.org/10.1006/jare.1999.0506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masseroni, D., A. Facchi, M. Romani, E. A. Chiaradia, O. Gharsallah, and C. Gandolfi, 2015: Surface energy flux measurements in a flooded and an aerobic rice field using a single eddy-covariance system. Paddy Water Environ., 13, 405424, https://doi.org/10.1007/s10333-014-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1961: Dew: Facts and fallacies. The Water Relations of Plants, A. J. Rutter and F. H. Whitehead, Eds., Wiley, 37–55.

  • Moro, M. J., A. Were, L. Villagarcía, Y. Cantón, and F. Domingo, 2007: Dew measurement by eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain. J. Hydrol., 335, 295302, https://doi.org/10.1016/j.jhydrol.2006.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y. X., X. P. Wang, and Y. F. Zhang, 2010: Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, northern China. J. Hydrol., 387, 265272, https://doi.org/10.1016/j.jhydrol.2010.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothenberg, S. E., X. Feng, B. Dong, L. Shang, R. Yin, and X. Yuan, 2011: Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environ. Pollut., 159, 12831289, https://doi.org/10.1016/j.envpol.2011.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, H. F., and R. H. Grant, 2009: Precipitation and dew in a soybean canopy: Spatial variations in leaf wetness and implications for Phakopsora pachyrhizi infection. Agric. For. Meteor., 149, 16211627, https://doi.org/10.1016/j.agrformet.2009.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S. P., P. Khare, K. M. Kumari, and S. S. Srivastava, 2006: Chemical characterization of dew at a regional representative site of North-Central India. Atmos. Res., 80, 239249, https://doi.org/10.1016/j.atmosres.2005.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uclés, O., L. Villagarcía, Y. Cantón, and F. Domingo, 2013: Microlysimeter station for long term non-rainfall water input and evaporation studies. Agric. For. Meteor., 182–183, 1320, https://doi.org/10.1016/j.agrformet.2013.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uclés, O., L. Villagarcía, M. J. Moro, Y. Canton, and F. Domingo, 2014: Role of dewfall in the water balance of a semiarid coastal steppe ecosystem. Hydrol. Processes, 28, 22712280, https://doi.org/10.1002/hyp.9780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoef, A., A. Diaz-Espejo, J. R. Knight, L. Villagarcia, and J. E. Fernandez, 2006: Adsorption of water vapor by bare soil in an olive grove in southern Spain. J. Hydrometeor., 7, 10111027, https://doi.org/10.1175/JHM556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallin, J. R., 1967: Agrometeorological aspects of dew. Agric. Meteor., 4, 85102, https://doi.org/10.1016/0002-1571(67)90014-3.

  • Wang, S., and Q. Zhang, 2011: Atmospheric physical characteristics of dew formation in semi-arid in Loess Plateau. Wuli Xuebao, 60, 059203, http://wulixb.iphy.ac.cn/CN/Y2011/V60/I5/059203.

    • Search Google Scholar
    • Export Citation
  • Wen, X. F., X. Lee, X. M. Sun, J. L. Wang, Z. M. Hu, S. G. Li, and G. R. Yu, 2012: Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia, 168, 549561, https://doi.org/10.1007/s00442-011-2091-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. B., W. L. Bland, and J. M. Norman, 1999: Measurement and simulation of dew accumulation and drying in a potato canopy. Agric. For. Meteor., 93, 111119, https://doi.org/10.1016/S0168-1923(98)00116-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J. Z., S. Z. Peng, S. H. Yang, and W. G. Wang, 2012: Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agric. Water Manage., 104, 184192, https://doi.org/10.1016/j.agwat.2011.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y. Y., B. X. Yan, and L. X. Wang, 2011: A research of dewfall in paddy. Zhongguo Nong Ye Ke Xue, 44 (3), 524530.

  • Yan, B. X., and Y. Y. Xu, 2010: Method exploring on dew condensation monitoring in wetland ecosystem. Procedia Environ. Sci., 2, 123133, https://doi.org/10.1016/j.proenv.2010.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, B. X., Y. Y. Xu, and L. X. Wang, 2010: Dew condensation rules in farmland ecosystem in Sanjiang Plain. Acta Ecol. Sin., 30, 55775584.

    • Search Google Scholar
    • Export Citation
  • Ye, Y. H., K. Zhou, L. Y. Song, J. H. Jin, and S. L. Peng, 2007: Dew amounts and its correlations with meteorological factors in urban landscapes of Guangzhou, China. Atmos. Res., 86, 2129, https://doi.org/10.1016/j.atmosres.2007.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., S. Wang, F. L. Yang, P. Yue, T. Yao, and W. Y. Wang, 2015: Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semi-arid region in China. Bound.-Layer Meteor., 154, 317331, https://doi.org/10.1007/s10546-014-9971-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. L., L. Lars, and G. Harald, 2007: Modeling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil Tillage Res., 93, 283298, https://doi.org/10.1016/j.still.2006.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 974 368 182
PDF Downloads 667 175 5