A Numerical Water Tracer Model for Understanding Event-Scale Hydrometeorological Phenomena

Huancui Hu Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Huancui Hu in
Current site
Google Scholar
PubMed
Close
,
Francina Dominguez Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
,
Praveen Kumar Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Praveen Kumar in
Current site
Google Scholar
PubMed
Close
,
Jeffery McDonnell Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Jeffery McDonnell in
Current site
Google Scholar
PubMed
Close
, and
David Gochis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David Gochis in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

We develop and implement a novel numerical water tracer model within the Noah LSM with multiparameterization options (WT-Noah-MP) that is specifically designed to track individual hydrometeorological events. This approach provides a more complete representation of the physical processes beyond the standard land surface model output. Unlike isotope-enabled LSMs, WT-Noah-MP does not simulate the concentration of oxygen or hydrogen isotopes, or require isotope information to drive it. WT-Noah-MP provides stores, fluxes, and transit time estimates of tagged water in the surface–subsurface system. The new tracer tool can account for the horizontal and vertical heterogeneity of tracer transport in the subsurface by allowing partial mixing in each soil layer. We compared model-estimated transit times at the H. J. Andrews Experimental Watershed in Oregon with those derived from isotope observations. Our results show that including partial mixing in the soil results in a more realistic transit time distribution than the basic well-mixed assumption. We then used WT-Noah-MP to investigate the regional response to an extreme precipitation event in the U.S. Pacific Northwest. The model differentiated the flood response due to direct precipitation from indirect thermal effects and showed that a large portion of this event water was retained in the soil after 6 months. The water tracer addition in Noah-MP can help us quantify the long-term memory in the hydrologic system that can impact seasonal hydroclimate variability through evapotranspiration and groundwater recharge.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu

Abstract

We develop and implement a novel numerical water tracer model within the Noah LSM with multiparameterization options (WT-Noah-MP) that is specifically designed to track individual hydrometeorological events. This approach provides a more complete representation of the physical processes beyond the standard land surface model output. Unlike isotope-enabled LSMs, WT-Noah-MP does not simulate the concentration of oxygen or hydrogen isotopes, or require isotope information to drive it. WT-Noah-MP provides stores, fluxes, and transit time estimates of tagged water in the surface–subsurface system. The new tracer tool can account for the horizontal and vertical heterogeneity of tracer transport in the subsurface by allowing partial mixing in each soil layer. We compared model-estimated transit times at the H. J. Andrews Experimental Watershed in Oregon with those derived from isotope observations. Our results show that including partial mixing in the soil results in a more realistic transit time distribution than the basic well-mixed assumption. We then used WT-Noah-MP to investigate the regional response to an extreme precipitation event in the U.S. Pacific Northwest. The model differentiated the flood response due to direct precipitation from indirect thermal effects and showed that a large portion of this event water was retained in the soil after 6 months. The water tracer addition in Noah-MP can help us quantify the long-term memory in the hydrologic system that can impact seasonal hydroclimate variability through evapotranspiration and groundwater recharge.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu
Save
  • Aleinov, I., and G. A. Schmidt, 2006: Water isotopes in the GISS ModelE land surface scheme. Global Planet. Change, 51, 108120, https://doi.org/10.1016/j.gloplacha.2005.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. T., J. R. Brooks, R. F. Keim, B. J. Bond, and J. J. McDonnell, 2014: The role of pre-event canopy storage in throughfall and stemflow by using isotopic tracers. Ecohydrology, 7, 858868, https://doi.org/10.1002/eco.1408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.-L. Yang, and G.-Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, https://doi.org/10.1007/s10584-014-1308-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkel, C., C. Soulsby, D. Tetzlaff, S. Dunn, and L. Spezia, 2012: High-frequency storm event isotope sampling reveals time-variant transit time distributions and influence of diurnal cycles. Hydrol. Processes, 26, 308316, https://doi.org/10.1002/hyp.8210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonne, J.-L., and Coauthors, 2015: The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. J. Geophys. Res. Atmos., 120, 29702989, https://doi.org/10.1002/2014JD022602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braud, I., T. Bariac, J. P. Gaudet, and M. Vauclin, 2005: SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO and H218O) transport model for bare soil. Part I. Model description and first verifications. J. Hydrol., 309, 277300, https://doi.org/10.1016/j.jhydrol.2004.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, J. R., H. R. Barnard, R. Coulombe, and J. J. McDonnell, 2010: Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci., 3, 100104, https://doi.org/10.1038/ngeo722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buttle, J. M., 1994: Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr., 18, 1641, https://doi.org/10.1177/030913339401800102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buttle, J. M., and D. J. McDonald, 2002: Coupled vertical and lateral preferential flow on a forested slope. Water Resour. Res, 38, 1060, https://doi.org/10.1029/2001WR000773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos., 119, 2338, https://doi.org/10.1002/2013JD020792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlyle-Moses, D. E., and J. H. C. Gash, 2011: Rainfall interception loss by forest canopies. Forest Hydrology and Biogeochemistry, Ecological Studies Series, Vol. 216, Springer, 407–423, https://doi.org/10.1007/978-94-007-1363-5_20.

    • Crossref
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehleringer, J. R., and T. E. Dawson, 1992: Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ., 15, 10731082, https://doi.org/10.1111/j.1365-3040.1992.tb01657.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evaristo, J., S. Jasechko, and J. J. McDonnell, 2015: Global separation of plant transpiration from groundwater and streamflow. Nature, 525, 9194, https://doi.org/10.1038/nature14983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., S. Taylor, C. E. Renshaw, and J. W. Kirchner, 2002: Isotopic evolution of snowmelt: 1. A physically based one-dimensional model. Water Resour. Res, 38, 1217, https://doi.org/10.1029/2001WR000814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenicia, F., S. Wrede, D. Kavetski, L. Pfister, L. Hoffmann, H. H. G. Savenije, and J. J. McDonnell, 2010: Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time. Hydrol. Processes, 24, 17301741, https://doi.org/10.1002/hyp.7595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. J., 2006: iCHASM, a flexible land-surface model that incorporates stable water isotopes. Global Planet. Change, 51, 121130, https://doi.org/10.1016/j.gloplacha.2005.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. J., and K. Sturm, 2006: REMOiso forcing for the iPILPS Phase 1 experiments and the performance of REMOiso in three domains. Global Planet. Change, 51, 7389, https://doi.org/10.1016/j.gloplacha.2005.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gat, J. R., 1996: Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci., 24, 225262, https://doi.org/10.1146/annurev.earth.24.1.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genereux, D. P., and R. P. Hooper, 1998: Oxygen and hydrogen isotopes in rainfall-runoff studies. Isotope Tracers in Catchment Hydrology, Elsevier, 319–346.

    • Crossref
    • Export Citation
  • Gerdel, R. W., 1954: The transmission of water through snow. Eos, Trans. Amer. Geophys. Union, 35, 475485, https://doi.org/10.1029/TR035i003p00475.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. Yu, and D. N. Yates, 2013: The WRF-Hydro model technical description and user's guide, version 1.0. NCAR Tech. Doc., 120 pp., https://www.ral.ucar.edu/projects/wrf_hydro.

  • Godsey, S. E., J. W. Kirchner, and D. W. Clow, 2009: Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol. Processes, 23, 18441864, https://doi.org/10.1002/hyp.7315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. P., D. Noone, and G. Bowen, 2015: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175177, https://doi.org/10.1126/science.aaa5931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, https://doi.org/10.1002/2016GL067978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haese, B., M. Werner, and G. Lohmann, 2013: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH. Geosci. Model Dev., 6, 14631480, https://doi.org/10.5194/gmd-6-1463-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hale, V. C., and J. J. McDonnell, 2016: Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison. Water Resour. Res., 52, 13581374, https://doi.org/10.1002/2014WR016124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., 2006: Improving land-surface parameterization schemes using stable water isotopes: Introducing the ‘iPILPS’ initiative. Global Planet. Change, 51, 324, https://doi.org/10.1016/j.gloplacha.2005.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hrachowitz, M., C. Soulsby, D. Tetzlaff, J. J. C. Dawson, S. M. Dunn, and I. A. Malcolm, 2009: Using long-term data sets to understand transit times in contrasting headwater catchments. J. Hydrol., 367, 237248, https://doi.org/10.1016/j.jhydrol.2009.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hrachowitz, M., H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby, 2013: What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrol. Earth Syst. Sci., 17, 533564, https://doi.org/10.5194/hess-17-533-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hrachowitz, M., P. Benettin, B. M. van Breukelen, O. Fovet, N. J. K. Howden, L. Ruiz, Y. van der Velde, and A. J. Wade, 2016: Transit times-the link between hydrology and water quality at the catchment scale. Wiley Interdiscip. Rev.: Water, 3, 629657, https://doi.org/10.1002/wat2.1155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. A., 2000: Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour. Res., 36, 26212642, https://doi.org/10.1029/2000WR900105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judy, C., J. R. Meiman, and I. Friedman, 1970: Deuterium variations in an annual snowpack. Water Resour. Res., 6, 125129, https://doi.org/10.1029/WR006i001p00125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, C., and J. J. McDonnell, 1998: Isotope Tracers in Catchment Hydrology. Elsevier, 839 pp., https://doi.org/10.1016/C2009-0-10239-8.

    • Crossref
    • Export Citation
  • Kendall, C., and T. B. Coplen, 2001: Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Processes, 15, 13631393, https://doi.org/10.1002/hyp.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaus, J., and J. J. McDonnell, 2013: Hydrograph separation using stable isotopes: Review and evaluation. J. Hydrol., 505, 4764, https://doi.org/10.1016/j.jhydrol.2013.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaus, J., K. P. Chun, K. J. McGuire, and J. J. McDonnell, 2015: Temporal dynamics of catchment transit times from stable isotope data. Water Resour. Res., 51, 42084223, https://doi.org/10.1002/2014WR016247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaney, F. W., K. Smettem, and D. J. Chittleborough, 1993: Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride. J. Hydrol., 147, 83103, https://doi.org/10.1016/0022-1694(93)90076-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., X. Feng, A. Faiia, E. Posmentier, R. Osterhuber, and J. Kirchner, 2010: Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water. Water Resour. Res., 46, W11512, https://doi.org/10.1029/2009WR008306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P., and M. K. Woo, 1984: Wetting front advance and freezing of meltwater within a snow cover: 2. A simulation model. Water Resour. Res., 20, 18651874, https://doi.org/10.1029/WR020i012p01865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., F. Dominguez, and G. Miguez-Macho, 2016: Impacts of a groundwater scheme on hydroclimatological conditions over southern South America. J. Hydrometeor., 17, 29592978, https://doi.org/10.1175/JHM-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonnell, J. J., 1990: A rationale for old water discharge through macropores in a steep, humid catchment. Water Resour. Res., 26, 28212832, https://doi.org/10.1029/WR026i011p02821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonnell, J. J., 2017: Beyond the water balance. Nat. Geosci., 10, 396–396, https://doi.org/10.1038/ngeo2964.

  • McDonnell, J. J., and K. Beven, 2014: Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resour. Res., 50, 53425350, https://doi.org/10.1002/2013WR015141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuire, K. J., and J. J. McDonnell, 2006: A review and evaluation of catchment transit time modeling. J. Hydrol., 330, 543563, https://doi.org/10.1016/j.jhydrol.2006.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuire, K. J., and J. J. McDonnell, 2010: Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities. Water Resour. Res., 46, W10543, https://doi.org/10.1029/2010WR009341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuire, K. J., D. R. DeWalle, and W. J. Gburek, 2002: Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J. Hydrol., 261, 132149, https://doi.org/10.1016/S0022-1694(02)00006-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuire, K. J., J. J. McDonnell, M. Weiler, C. Kendall, B. L. McGlynn, J. M. Welker, and J. Seibert, 2005: The role of topography on catchment-scale water residence time. Water Resour. Res., 41, W05002, https://doi.org/10.1029/2004WR003657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuire, K. J., M. Weiler, and J. J. McDonnell, 2007: Integrating tracer experiments with modeling to assess runoff processes and water transit times. Adv. Water Resour., 30, 824837, https://doi.org/10.1016/j.advwatres.2006.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2008: Service assessment: Pacific Northwest Storms of December 1–3, 2007. NOAA/NWS, 39 pp., https://www.weather.gov/media/publications/assessments/pac_nw08.pdf.

  • Pfister, L., N. Martínez-Carreras, C. Hissler, J. Klaus, G. E. Carrer, M. K. Stewart, and J. J. McDonnell, 2017: Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. Hydrol. Processes, 31, 18281845, https://doi.org/10.1002/hyp.11134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilotto, I. L., D. A. Rodríguez, J. Tomasella, G. Sampaio, and S. C. Chou, 2015: Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazonia. Meteor. Atmos. Phys., 127, 711723, https://doi.org/10.1007/s00703-015-0399-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raben, P., and W. H. Theakstone, 1998: Changes of ionic and oxygen isotopic composition of the snowpack at the Glacier Austre Okstindbreen, Norway, 1995. Hydrol. Res., 29, 120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranken, D. W., 1974: Hydrologic properties of soil and subsoil on a steep, forested slope. M.S. thesis, Dept. of Forest Engineering, Oregon State University, 127 pp., https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qn59q6026.

  • Riley, W. J., C. J. Still, M. S. Torn, and J. A. Berry, 2002: A mechanistic model of H 2 18O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Global Biogeochem. Cycles, 16, 1095, https://doi.org/10.1029/2002GB001878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risi, C., and Coauthors, 2016: The water isotopic version of the land-surface model ORCHIDEE: Implementation, evaluation, sensitivity to hydrological parameters. Hydrol. Curr. Res., 7, 258, https://doi.org/10.4172/2157-7587.1000258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouxel, M., J. Molénat, L. Ruiz, C. Legout, M. Faucheux, and C. Gascuel-Odoux, 2011: Seasonal and spatial variation in groundwater quality along the hillslope of an agricultural research catchment (western France). Hydrol. Processes, 25, 831841, https://doi.org/10.1002/hyp.7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., and X. Zeng, 2009: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). J. Geophys. Res, 114, D01107, https://doi.org/10.1029/2008JD010834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q. Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senatore, A., G. Mendicino, D. J. Gochis, W. Yu, D. N. Yates, and H. Kunstmann, 2015: Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst., 7, 16931715, https://doi.org/10.1002/2015MS000510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sklash, M. G., R. N. Farvolden, and P. Fritz, 1976: A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Can. J. Earth Sci., 13, 271283, https://doi.org/10.1139/e76-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, M. K., and J. J. McDonnell, 1991: Modeling base flow soil water residence times from deuterium concentrations. Water Resour. Res., 27, 26812693, https://doi.org/10.1029/91WR01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stichler, W., 1987: Snowcover and snowmelt processes studied by means of environmental isotopes. Seasonal Snowcovers: Physics, Chemistry, Hydrology, Springer, 673–726.

    • Crossref
    • Export Citation
  • Sturm, C., Q. Zhang, and D. Noone, 2010: An introduction to stable water isotopes in climate models: Benefits of forward proxy modelling for paleoclimatology. Climate Past, 6, 115129, https://doi.org/10.5194/cp-6-115-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twining, J., D. Stone, C. Tadros, A. Henderson-Sellers, and A. Williams, 2006: Moisture Isotopes in the Biosphere and Atmosphere (MIBA) in Australia: A priori estimates and preliminary observations of stable water isotopes in soil, plant and vapour for the Tumbarumba Field Campaign. Global Planet. Change, 51, 5972, https://doi.org/10.1016/j.gloplacha.2005.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Velde, Y., P. J. J. F. Torfs, S. E. A. T. M. van der Zee, and R. Uijlenhoet, 2012: Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. Water Resour. Res., 48, W06536, https://doi.org/10.1029/2011WR011310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiler, M., and J. McDonnell, 2004: Virtual experiments: A new approach for improving process conceptualization in hillslope hydrology. J. Hydrol., 285, 318, https://doi.org/10.1016/S0022-1694(03)00271-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., S. Miyazaki, S. Kanae, and T. Oki, 2006: Iso-MATSIRO, a land surface model that incorporates stable water isotopes. Global Planet. Change, 51, 90107, https://doi.org/10.1016/j.gloplacha.2005.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-P., Z.-L. Yang, G.-Y. Niu, and X.-Y. Wang, 2009: Stable water isotope simulation in different reservoirs of Manaus, Brazil, by Community Land Model incorporating stable isotopic effect. Int. J. Climatol., 29, 619628, https://doi.org/10.1002/joc.1740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuber, A., 1986: On the interpretation of tracer data in variable flow systems. J. Hydrol., 86, 4557, https://doi.org/10.1016/0022-1694(86)90005-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1098 504 108
PDF Downloads 688 166 10