Synoptic-Scale Control over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates

Moshe Armon Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

Search for other papers by Moshe Armon in
Current site
Google Scholar
PubMed
Close
,
Elad Dente Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, and Geological Survey of Israel, Jerusalem, Israel

Search for other papers by Elad Dente in
Current site
Google Scholar
PubMed
Close
,
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
,
Yehouda Enzel Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

Search for other papers by Yehouda Enzel in
Current site
Google Scholar
PubMed
Close
, and
Efrat Morin Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

Search for other papers by Efrat Morin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall in the Levant drylands is scarce but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST), and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal characteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region. Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant. ARST rainfall is local and intense, whereas TP rainfall is widespread and prolonged due to high precipitation efficiency and large-scale forcing. Thus, TP rainfall generates high-magnitude floods in the largest catchments; integration of numerous basins leads to sediment feeding from the south into the Dead Sea, exhibited in large sediment plumes. Anecdotal observations of the channel with the largest catchment in the region (Nahal HaArava) indicate that TP floods account for noticeable geomorphic changes in the channel. It provides insights into past intervals of increased flash flood frequency characterized by episodes of marked hydrogeomorphic work; such an increase is especially expected during intervals of southerly situated and southwesterly oriented STJs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0013.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Moshe Armon, moshe.armon@mail.huji.ac.il.

Abstract

Rainfall in the Levant drylands is scarce but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST), and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal characteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region. Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant. ARST rainfall is local and intense, whereas TP rainfall is widespread and prolonged due to high precipitation efficiency and large-scale forcing. Thus, TP rainfall generates high-magnitude floods in the largest catchments; integration of numerous basins leads to sediment feeding from the south into the Dead Sea, exhibited in large sediment plumes. Anecdotal observations of the channel with the largest catchment in the region (Nahal HaArava) indicate that TP floods account for noticeable geomorphic changes in the channel. It provides insights into past intervals of increased flash flood frequency characterized by episodes of marked hydrogeomorphic work; such an increase is especially expected during intervals of southerly situated and southwesterly oriented STJs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0013.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Moshe Armon, moshe.armon@mail.huji.ac.il.

Supplementary Materials

    • Supplemental Materials (ZIP 69.08 MB)
Save
  • Abouelmagd, A., M. Sultan, A. Milewski, A. E. Kehew, N. C. Sturchio, F. Soliman, R. V. Krishnamurthy, and E. Cutrim, 2012: Toward a better understanding of palaeoclimatic regimes that recharged the fossil aquifers in North Africa: Inferences from stable isotope and remote sensing data. Palaeogeogr. Palaeoclimatol. Palaeoecol., 329–330, 137149, https://doi.org/10.1016/j.palaeo.2012.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abouelmagd, A., and Coauthors, 2014: Paleoclimate record in the Nubian Sandstone Aquifer, Sinai Peninsula, Egypt. Quat. Res., 81, 158167, https://doi.org/10.1016/j.yqres.2013.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlborn, M., and Coauthors, 2018: Increased frequency of torrential rainstorms during a regional late Holocene eastern Mediterranean drought. Quat. Res., 89, 425431, https://doi.org/10.1017/qua.2018.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, Y., J. B. Laronne, and I. Reid, 2003: Suspended sediment transport in flash floods of the semiarid northern Negev, Israel. IAHS Publ., 278, 346352, http://hydrologie.org/redbooks/a278/iahs_278_346.pdf.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., and Y. Shay-El, 1994: The moisture source for the winter cyclones in the eastern Mediterranean. Isr. Meteor. Res. Pap., 5, 2027.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., I. Osetinsky, B. Ziv, and H. Shafir, 2004: Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. Int. J. Climatol., 24, 10011011, https://doi.org/10.1002/joc.1036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amit, R., Y. Enzel, and D. Sharon, 2006: Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems. Geology, 34, 509512, https://doi.org/10.1130/G22354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anders, M. D., and Coauthors, 2005: Pleistocene geomorphology and geochronology of eastern Grand Canyon: Linkages of landscape components during climate changes. Quat. Sci. Rev., 24, 24282448, https://doi.org/10.1016/j.quascirev.2005.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashbel, D., 1938: Great floods in Sinai Peninsula, Palestine, Syria and the Syrian Desert, and the influence of the Red Sea on their formation. Quart. J. Roy. Meteor. Soc., 64, 635639, https://doi.org/10.1002/qj.49706427716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avni, Y., and Coauthors, 2016: Self accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel. J. Geophys. Res. Earth Surf., 121, 1738, https://doi.org/10.1002/2015JF003738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bárdossy, A., and F. Filiz, 2005: Identification of flood producing atmospheric circulation patterns. J. Hydrol., 313, 4857, https://doi.org/10.1016/j.jhydrol.2005.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, H.-J., and F. Steinkohl, 2004: Origin of winter precipitation in the central coastal lowlands of Saudi Arabia. J. Arid Environ., 57, 101115, https://doi.org/10.1016/S0140-1963(03)00091-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, N. A., G. Villarini, M. A. Nayak, and K. White, 2017: Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res., 53, 257269, https://doi.org/10.1002/2016WR019064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartov, Y., S. L. Goldstein, M. Stein, and Y. Enzel, 2003: Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology, 31, 439442, https://doi.org/10.1130/0091-7613(2003)031<0439:CAEITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Begin, Z. B., M. Stein, A. Katz, M. Machlus, A. Rosenfeld, B. Buchbinder, and Y. Bartov, 2004: Southward migration of rain tracks during the last glacial, revealed by salinity gradient in Lake Lisan (Dead Sea rift). Quat. Sci. Rev., 23, 16271636, https://doi.org/10.1016/j.quascirev.2004.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belachsen, I., F. Marra, N. Peleg, and E. Morin, 2017: Convective rainfall in a dry climate: Relations with synoptic systems and flash-flood generation in the Dead Sea region. Hydrol. Earth Syst. Sci., 21, 51655180, https://doi.org/10.5194/hess-21-5165-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benito, G., M. G. Macklin, C. Zielhofer, A. F. Jones, and M. J. Machado, 2015: Holocene flooding and climate change in the Mediterranean. Catena, 130, 1333, https://doi.org/10.1016/j.catena.2014.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Moshe, L., I. Haviv, Y. Enzel, E. Zilberman, and A. Matmon, 2008: Incision of alluvial channels in response to a continuous base level fall: Field characterization, modeling, and validation along the Dead Sea. Geomorphology, 93, 524536, https://doi.org/10.1016/j.geomorph.2007.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borga, M., and E. Morin, 2014: Characteristics of flash flood regimes in the Mediterranean region. Storminess and Environmental Change Climate Forcing and Responses in the Mediterranean Region, N. Diodato and G. Bellocchi, Eds., Springer, 65–76.

    • Crossref
    • Export Citation
  • Bull, W. B., 1988: Floods; degradation and aggradation. Flood Geomorphology, V. R. Baker, R. C. Kochel, and P. C. Patton, Eds., John Wiley and Sons, 157–165.

  • Bull, W. B., and A. P. Schick, 1979: Impact of climatic change on an arid watershed: Nahal Yael, southern Israel. Quat. Res., 11, 153171, https://doi.org/10.1016/0033-5894(79)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, E. M., P. R. Bierman, A. P. Schick, J. Lekach, Y. Enzel, and M. Caffee, 2000: Sediment yield exceeds sediment production in arid region drainage basins. Geology, 28, 995998, https://doi.org/10.1130/0091-7613(2000)28<995:SYESPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, J. E., and J. E. O’Connor, 1995: Geomorphically effective floods. Natural and Anthropogenic Influences in Fluvial Geomorphology, Geophys. Monogr., Vol. 89, Amer. Geophys. Union, 45–56.

    • Crossref
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, M., A. Matmon, E. Zilberman, N. Porat, D. Gluck, and Y. Enzel, 2009: Bathymetry of Lake Lisan controls late Pleistocene and Holocene stream incision in response to base level fall. Geomorphology, 106, 352362, https://doi.org/10.1016/j.geomorph.2008.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayan, U., and R. Abramski, 1983: Heavy rain in the Middle East related to unusual jet stream properties. Bull. Amer. Meteor. Soc., 64, 11381140, https://doi.org/10.1175/1520-0477(1983)064<1138:HRITME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayan, U., and E. Morin, 2006: Flash flood–producing rainstorms over the Dead Sea: A review. Geol. Soc. Amer. Spec. Pap., 401, 5362, https://doi.org/10.1130/2006.2401(04).

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, L., M. F. McCabe, G. Stenchikov, J. P. Evans, and P. A. Kucera, 2015: Simulation of flash-flood-producing storm events in Saudi Arabia using the Weather Research and Forecasting Model. J. Hydrometeor., 16, 615630, https://doi.org/10.1175/JHM-D-14-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dente, E., N. G. Lensky, E. Morin, T. Grodek, N. A. Sheffer, and Y. Enzel, 2017: Geomorphic response of a low‐gradient channel to modern, progressive base-level lowering: Nahal HaArava, the Dead Sea. J. Geophys. Res. Earth Surf., 122, 24682487, https://doi.org/10.1002/2016JF004081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., E. Tyrlis, D. Edry, S. O. Krichak, B. Steil, and J. Lelieveld, 2013: Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. Atmos., 118, 70877108, https://doi.org/10.1002/jgrd.50569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., S. B. Feldstein, E. Tyrlis, M. Riemer, M. Baumgart, M. Fnais, M. Sprenger, and J. Lelieveld, 2016: Dynamics of tropical-extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quart. J. Roy. Meteor. Soc., 142, 18621880, https://doi.org/10.1002/qj.2781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ely, L. L., Y. Enzel, and D. R. Cayan, 1994: Anomalous North Pacific atmospheric circulation and large winter floods in the southwestern United States. J. Climate, 7, 977987, https://doi.org/10.1175/1520-0442(1994)007<0977:ANPACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzel, Y., D. R. Cayan, R. Y. Anderson, and S. G. Wells, 1989: Atmospheric circulation during Holocene lake stands in the Mojave Desert: Evidence of regional climate change. Nature, 341, 4447, https://doi.org/10.1038/341044a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzel, Y., W. J. Brown, R. Y. Anderson, L. D. McFadden, and S. G. Wells, 1992: Short-duration Holocene lakes in the Mojave River drainage basin, southern California. Quat. Res., 38, 6073, https://doi.org/10.1016/0033-5894(92)90030-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzel, Y., R. Bookman, D. Sharon, H. Gvirtzman, U. Dayan, B. Ziv, and M. Stein, 2003: Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res., 60, 263273, https://doi.org/10.1016/j.yqres.2003.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzel, Y., R. Amit, U. Dayan, O. Crouvi, R. Kahana, B. Ziv, and D. Sharon, 2008: The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global Planet. Change, 60, 165192, https://doi.org/10.1016/j.gloplacha.2007.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzel, Y., and Coauthors, 2012: Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: An “impact of climatic change on an arid watershed”? Bull. Geol. Soc. Amer., 124, 705722, https://doi.org/10.1130/B30538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzel, Y., Y. Kushnir, and J. Quade, 2015: The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons. Global Planet. Change, 129, 6991, https://doi.org/10.1016/j.gloplacha.2015.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farhan, Y., and A. Anbar, 2014: Fragile landscape: Impact and consequences of May 2014 flash-flood disaster in the Aqaba area, southern Jordan. Res. J. Environ. Earth Sci., 6, 451465.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vorosmarty, J. O. Roads, and C. J. Willmott, 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304, https://doi.org/10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginat, H., and B. Shalmon, 2014: Last rain in the southern Negev and Arava in May 2014 (in Hebrew). Negev, Dead Sea Arava Stud., 6, 5962.

    • Search Google Scholar
    • Export Citation
  • Goldreich, Y., 1994: The spatial distribution of annual rainfall in Israel—A review. Theor. Appl. Climatol., 50, 4559, https://doi.org/10.1007/BF00864902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldreich, Y., 2012: The Climate of Israel: Observation, Research and Application. Springer, 270 pp.

  • Goldreich, Y., H. Mozes, and D. Rosenfeld, 2004: Radar analysis of cloud systems and their rainfall yield in Israel. Isr. J. Earth Sci., 53, 6376, https://doi.org/10.1560/G68K-30MN-D5V0-KUHU.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenbaum, N., A. P. Schick, and V. R. Baker, 2000: The palaeoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel. Earth Surf. Processes Landforms, 25, 951971, https://doi.org/10.1002/1096-9837(200008)25:9<951::AID-ESP110>3.0.CO;2-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenbaum, N., Y. Enzel, and A. P. Schick, 2001a: Magnitude and frequency of paleofloods and historical floods in the Arava basin, Negev Desert, Israel. Isr. J. Earth Sci., 50, 159186, https://doi.org/10.1092/N5VU-FU5F-QNWC-UDCK.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenbaum, N., U. Schwartz, A. P. Schick, and Y. Enzel, 2001b: Paleofloods and the estimation of long-term transmission losses and recharge to the lower Nahal Zin alluvial aquifer, Negev Desert, Israel. Ancient Floods, Modern Hazards, P. K. House et al., Eds., Water Science and Application Series, Vol. 5, Amer. Geophys. Union, 311–328, https://doi.org/10.1029/WS005p0311.

    • Crossref
    • Export Citation
  • Greenbaum, N., A. Ben-Zvi, I. Haviv, and Y. Enzel, 2006a: The hydrology and paleohydrology of the Dead Sea tributaries. Spec. Pap. Geol. Soc. Amer., 401, 6393, https://doi.org/10.1130/2006.2401(05).

    • Search Google Scholar
    • Export Citation
  • Greenbaum, N., N. Porat, E. Rhodes, and Y. Enzel, 2006b: Large floods during late Oxygen Isotope Stage 3, southern Negev desert, Israel. Quat. Sci. Rev., 25, 704719, https://doi.org/10.1016/j.quascirev.2005.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodek, T., Y. Jacoby, E. Morin, and O. Katz, 2012: Effectiveness of exceptional rainstorms on a small Mediterranean basin. Geomorphology, 159–160, 156168, https://doi.org/10.1016/j.geomorph.2012.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschboeck, K. K., 1987: Hydroclimatically-defined mixed distributions in partial duration flood series. Hydrologic Frequency Modeling: Proceedings of the International Symposium on Flood Frequency and Risk Analyses, V. P. Singh, Ed., Springer, 199–212, https://doi.org/10.1007/978-94-009-3953-0_13.

    • Crossref
    • Export Citation
  • Hirschboeck, K. K., L. L. Ely, and R. A. Maddox, 2000: Hydroclimatology of meteorologic floods. Inland Flood Hazards: Human, Riparian and Aquatic Communities, E. Wohl, Ed., Cambridge University Press, 39–72.

    • Crossref
    • Export Citation
  • IMS, 2016: Israel Meteorological Service database (in Hebrew). Accessed 20 July 2016, https://ims.data.gov.il.

  • Issar, A., A. Bein, and A. Michaeli, 1972: On the ancient water of the upper Nubain sandstone aquifer in central Sinai and southern Israel. J. Hydrol., 17, 353374, https://doi.org/10.1016/0022-1694(72)90092-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahana, R., B. Ziv, Y. Enzel, and U. Dayan, 2002: Synoptic climatology of major floods in the Negev Desert, Israel. Int. J. Climatol., 22, 867882, https://doi.org/10.1002/joc.766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., and S. W. Franks, 2003: Rainfall in arid and semi-arid regions. Understanding Water in a Dry Environment, I. Simmers, Ed., Taylor & Francis, 15–64.

    • Crossref
    • Export Citation
  • Kirby, M. E., S. R. H. Zimmerman, W. P. Patterson, and J. J. Rivera, 2012: A 9170-year record of decadal-to-multi-centennial scale pluvial episodes from the coastal Southwest United States: A role for atmospheric rivers? Quat. Sci. Rev., 46, 5765, https://doi.org/10.1016/j.quascirev.2012.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., 2008: Scientific data stewardship of international satellite cloud climatology project B1 global geostationary observations. J. Appl. Remote Sens., 2, 023548, https://doi.org/10.1117/1.3043461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2005: Tropical–extratropical interactions associated with an Atlantic tropical plume and subtropical jet streak. Mon. Wea. Rev., 133, 27592776, https://doi.org/10.1175/MWR2999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2007: Tropical-extratropical interactions related to upper-level troughs at low latitudes. Dyn. Atmos. Oceans, 43, 3662, https://doi.org/10.1016/j.dynatmoce.2006.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. E. Martin, 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144, https://doi.org/10.1175/WAF963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, https://doi.org/10.1175/2009JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949–2015. Geophys. Res. Lett., 44, 11 45611 462, https://doi.org/10.1002/2017GL075399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, https://doi.org/10.1016/S0309-1708(02)00062-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., and P. Alpert, 1998: Role of large scale moist dynamics in November 1–5, 1994, hazardous Mediterranean weather. J. Geophys. Res., 103, 19 45319 468, https://doi.org/10.1029/98JD01710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., P. Alpert, and T. N. Krishnamurti, 1997: Interaction of topography and tropospheric flow—A possible generator for the Red Sea Trough? Meteor. Atmos. Phys., 63, 149158, https://doi.org/10.1007/BF01027381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., M. Tsidulko, and P. Alpert, 2000: November 2, 1994, severe storms in the southeastern Mediterranean. Atmos. Res., 53, 4562, https://doi.org/10.1016/S0169-8095(99)00045-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., U. Dayan, B. Ziv, E. Morin, and Y. Enzel, 2017: Climate of the Levant: Phenomena and mechanisms. Quaternary of the Levant: Environments, Climate Change, and Humans, Y. Enzel and B.-Y. Ofer, Eds., Cambridge University Press, 31–44.

    • Crossref
    • Export Citation
  • Lange, J., and C. Leibundgut, 2003: Surface runoff and sediment dynamics in arid and semi-arid regions. Understanding Water in a Dry Environment, I. Simmers, Ed., Taylor & Francis, 115–150.

    • Crossref
    • Export Citation
  • Ludwig, P., E. J. Schaffernicht, Y. Shao, and J. G. Pinto, 2016: Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res. Atmos., 121, 21302145, https://doi.org/10.1002/2015JD024444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Yao, A. Dai, and S. B. Feldstein, 2015: The positive North Atlantic oscillation with downstream blocking and Middle East snowstorms: The large-scale environment. J. Climate, 28, 63986418, https://doi.org/10.1175/JCLI-D-15-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mabbutt, J. A., 1977: Desert Landforms. MIT Press, 340 pp.

  • Maley, J., 2000: Last Glacial Maximum lacustrine and fluviatile formations in the Tibesti and other Saharan mountains, and large-scale climatic teleconnections linked to the activity of the subtropical jet stream. Global Planet. Change, 26, 121136, https://doi.org/10.1016/S0921-8181(00)00039-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marra, F., and E. Morin, 2015: Use of radar QPE for the derivation of intensity–duration–frequency curves in a range of climatic regimes. J. Hydrol., 531, 427440, https://doi.org/10.1016/j.jhydrol.2015.08.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marra, F., and E. Morin, 2018: Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-band radar estimates. Atmos. Res., 200, 126138, https://doi.org/10.1016/j.atmosres.2017.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matmon, A., S. Elfassi, A. Hidy, Y. Geller, N. Porat, and ASTER Team, 2016: Controls on aggradation and incision in the NE Negev, Israel, since the middle Pleistocene. Geomorphology, 261, 132146, https://doi.org/10.1016/j.geomorph.2016.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuirk, J. P., A. H. Thompson, and N. R. Smith, 1987: Moisture bursts over the tropical Pacific Ocean. Mon. Wea. Rev., 115, 787798, https://doi.org/10.1175/1520-0493(1987)115<0787:MBOTTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meirovich, L., A. Ben-Zvi, I. Shentsis, and E. Yanovich, 1998: Frequency and magnitude of runoff events in the arid Negev of Israel. J. Hydrol., 207, 204219, https://doi.org/10.1016/S0022-1694(98)00135-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merz, N., C. C. Raible, and T. Woollings, 2015: North Atlantic eddy-driven jet in interglacial and glacial winter climates. J. Climate, 28, 39773997, https://doi.org/10.1175/JCLI-D-14-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., and M. Gabella, 2007: Radar-based quantitative precipitation estimation over Mediterranean and dry climate regimes. J. Geophys. Res., 112, D20108, https://doi.org/10.1029/2006JD008206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., and H. Yakir, 2014: Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrol. Sci. J., 59, 13531362, https://doi.org/10.1080/02626667.2013.841315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., Y. Jacoby, S. Navon, and E. Bet-Halachmi, 2009: Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information. Adv. Water Resour., 32, 10661076, https://doi.org/10.1016/j.advwatres.2008.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehorai, R., I. M. Lensky, L. Hochman, I. Gertman, S. Brenner, A. Muskin, and N. G. Lensky, 2013: Satellite observations of turbidity in the Dead Sea. J. Geophys. Res. Oceans, 118, 31463160, https://doi.org/10.1002/jgrc.20204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neugebauer, I., and Coauthors, 2014: Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quat. Sci. Rev., 102, 149165, https://doi.org/10.1016/j.quascirev.2014.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, J. E., and J. E. Costa, 2004: Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km2 in the United States and Puerto Rico. Water Resour. Res., 40, W01107, https://doi.org/10.1029/2003WR002247.

    • Search Google Scholar
    • Export Citation
  • Panziera, L., C. N. James, and U. Germann, 2015: Mesoscale organization and structure of orographic precipitation producing flash floods in the Lago Maggiore region. Quart. J. Roy. Meteor. Soc., 141, 224248, https://doi.org/10.1002/qj.2351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., and E. Morin, 2012: Convective rain cells: Radar-derived spatiotemporal characteristics and synoptic patterns over the eastern Mediterranean. J. Geophys. Res., 117, D15116, https://doi.org/10.1029/2011JD017353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubin, S., B. Ziv, and N. Paldor, 2007: Tropical plumes over eastern North Africa as a source of rain in the Middle East. Mon. Wea. Rev.,