Evaluation of Atmospheric River Predictions by the WRF Model Using Aircraft and Regional Mesonet Observations of Orographic Precipitation and Its Forcing

Andrew Martin Center for Western Weather and Water Extremes, Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Andrew Martin in
Current site
Google Scholar
PubMed
Close
,
F. Martin Ralph Center for Western Weather and Water Extremes, Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
,
Reuben Demirdjian Center for Western Weather and Water Extremes, Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Reuben Demirdjian in
Current site
Google Scholar
PubMed
Close
,
Laurel DeHaan Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Laurel DeHaan in
Current site
Google Scholar
PubMed
Close
,
Rachel Weihs Center for Western Weather and Water Extremes, Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Rachel Weihs in
Current site
Google Scholar
PubMed
Close
,
John Helly Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California
San Diego Supercomputer Center, University of California, San Diego, La Jolla, California

Search for other papers by John Helly in
Current site
Google Scholar
PubMed
Close
,
David Reynolds Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by David Reynolds in
Current site
Google Scholar
PubMed
Close
, and
Sam Iacobellis Climate Atmospheric Science and Physical Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Sam Iacobellis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate forecasts of precipitation during landfalling atmospheric rivers (ARs) are critical because ARs play a large role in water supply and flooding for many regions. In this study, we have used hundreds of observations to verify global and regional model forecasts of atmospheric rivers making landfall in Northern California and offshore in the midlatitude northeast Pacific Ocean. We have characterized forecast error and the predictability limit in AR water vapor transport, static stability, onshore precipitation, and standard atmospheric fields. Analysis is also presented that apportions the role of orographic forcing and precipitation response in driving errors in forecast precipitation after AR landfall. It is found that the global model and the higher-resolution regional model reach their predictability limit in forecasting the atmospheric state during ARs at similar lead times, and both present similar and important errors in low-level water vapor flux, moist-static stability, and precipitation. However, the relative contribution of forcing and response to the incurred precipitation error is very different in the two models. It can be demonstrated using the analysis presented herein that improving water vapor transport accuracy can significantly reduce regional model precipitation errors during ARs, while the same cannot be demonstrated for the global model.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0098.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Martin, mc@ucsd.edu

Abstract

Accurate forecasts of precipitation during landfalling atmospheric rivers (ARs) are critical because ARs play a large role in water supply and flooding for many regions. In this study, we have used hundreds of observations to verify global and regional model forecasts of atmospheric rivers making landfall in Northern California and offshore in the midlatitude northeast Pacific Ocean. We have characterized forecast error and the predictability limit in AR water vapor transport, static stability, onshore precipitation, and standard atmospheric fields. Analysis is also presented that apportions the role of orographic forcing and precipitation response in driving errors in forecast precipitation after AR landfall. It is found that the global model and the higher-resolution regional model reach their predictability limit in forecasting the atmospheric state during ARs at similar lead times, and both present similar and important errors in low-level water vapor flux, moist-static stability, and precipitation. However, the relative contribution of forcing and response to the incurred precipitation error is very different in the two models. It can be demonstrated using the analysis presented herein that improving water vapor transport accuracy can significantly reduce regional model precipitation errors during ARs, while the same cannot be demonstrated for the global model.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0098.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Martin, mc@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 469.04 KB)
Save
  • Alpert, P., 1986: Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Climate Appl. Meteor., 25, 532545, https://doi.org/10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2017: Predictability limit. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Predictability_limit.

  • Bader, M., and W. Roach, 1977: Orographic rainfall in warm sectors of depressions. Quart. J. Roy. Meteor. Soc., 103, 269280, https://doi.org/10.1002/qj.49710343605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and D. P. Lettenmaier, 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265284, https://doi.org/10.1029/94RG00625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barstad, I., and R. B. Smith, 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6, 8599, https://doi.org/10.1175/JHM-404.1.

  • Browning, K., and N. Roberts, 1996: Variation of frontal and precipitation structure along a cold front. Quart. J. Roy. Meteor. Soc., 122, 18451872, https://doi.org/10.1002/qj.49712253606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., F. Hill, and C. Pardoe, 1974: Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309330, https://doi.org/10.1002/qj.49710042505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513, https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, https://doi.org/10.1002/wrcr.20537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’S second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., M. J. Brennan, F. Pereira, M. J. Bodner, and R. H. Grumm, 2009: Assessing the potential for rare precipitation events with standardized anomalies and ensemble guidance at the hydrometeorological prediction center. Bull. Amer. Meteor. Soc., 90, 445454, https://doi.org/10.1175/2008BAMS2636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., D. E. Waliser, P. J. Neiman, B. Guan, J. M. Ryoo, and G. A. Wick, 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465474, https://doi.org/10.1007/s00382-012-1322-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, B. J. Moore, M. Hughes, S. E. Yuter, and F. M. Ralph, 2013: Kinematic and thermodynamic structures of sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in Northern California. Mon. Wea. Rev., 141, 20152036, https://doi.org/10.1175/MWR-D-12-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J., J. Redelsperger, C. Cailly, and E. Arbogast, 1994: Nonhydrostatic simulation of frontogenesis in a moist atmosphere. Part III: Thermal wind imbalance and rainbands. J. Atmos. Sci., 51, 34673485, https://doi.org/10.1175/1520-0469(1994)051<3467:NSOFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western us extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, https://doi.org/10.1002/2016GL067765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalakes, J., and Coauthors, 2015: Evaluating performance and scalability of candidate dynamical cores for the next generation global prediction system. MultiCore 5 Workshop, Boulder, CO, NCAR, 15 pp., https://www2.cisl.ucar.edu/sites/default/files/Michalakes_Slides.pdf.

  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. White, D. Kingsmill, and P. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s Coastal Mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Proc. Inst. Civ. Eng.: Water Manage., 162, 8394, https://doi.org/10.1680/wama.2009.162.2.83.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. Dettinger, 2012: Historical and national perspectives on extreme west coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, https://doi.org/10.1175/2010JHM1232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. Neiman, R. Zamora, and M. Dettinger, 2013a: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. Intrieri, D. Andra Jr., S. Boukabara, and D. Bright, 2013b: The emergence of weather-focused testbeds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871211, https://doi.org/10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2014: A vision for future observations for western U.S. extreme precipitation and flooding. J. Contemp. Water Res. Educ., 153, 1632, https://doi.org/10.1111/j.1936-704X.2014.03176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33, 11631175, https://doi.org/10.1175/1520-0450(1994)033<1163:ADMFEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, https://doi.org/10.1175/2009MWR2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2012: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Swain, D. L., B. Lebassi-Habtezion, and N. S. Diffenbaugh, 2015: Evaluation of nonhydrostatic simulations of northeast Pacific atmospheric rivers and comparison to in situ observations. Mon. Wea. Rev., 143, 35563569, https://doi.org/10.1175/MWR-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and S. A. Clough, 1991: Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87. Quart. J. Roy. Meteor. Soc., 117, 903941, https://doi.org/10.1002/qj.49711750103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2008: Airborne Doppler radar and sounding analysis of an oceanic cold front. Mon. Wea. Rev., 136, 14751491, https://doi.org/10.1175/2007MWR2241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and Coauthors, 2012: ARW version 3.4 modeling system user’s guide. NCAR, 384 pp., http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.4/ARWUsersGuideV3.pdf.

  • Weygandt, S. S., T. Smirnova, S. Benjamin, K. Brundage, S. Sahm, C. Alexander, and B. Schwartz, 2009: The High Resolution Rapid Refresh (HRRR): An hourly updated convection resolving model utilizing radar reflectivity assimilation from the RUC/RR. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 15A.6, https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154317.htm.

  • White, A. B., F. Ralph, P. Neiman, D. Gottas, and S. Gutman, 2009: The NOAA coastal atmospheric river observatory. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10B.4, https://ams.confex.com/ams/34Radar/techprogram/paper_155601.htm.

  • White, A. B., and Coauthors, 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, https://doi.org/10.1175/JTECH-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013a: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 21662176, https://doi.org/10.1109/TGRS.2012.2211024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013b: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, https://doi.org/10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winterfeldt, J., B. Geyer, and R. Weisse, 2011: Using QuikSCAT in the added value assessment of dynamically downscaled wind speed. Int. J. Climatol., 31, 10281039, https://doi.org/10.1002/joc.2105.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1169 335 28
PDF Downloads 1116 295 34