• Bodnar, R. J., T. Azbej, S. P. Becker, C. Cannatelli, A. Fall, and M. J. Severs, 2013: Whole Earth geohydrologic cycle, from the clouds to the core: The distribution of water in the dynamic Earth system. The Web of Geological Sciences: Advances, Impacts, and Interactions, M. E. Bickford, Ed., Geological Society of America, 431–461, https://doi.org/10.1130/2013.2500(13).

    • Crossref
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149165, https://doi.org/10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Y. Sud, S. D. Schubert, and G. K. Walker, 2002: GEWEX CSE sources of precipitation using GCM water vapor tracers. GEWEX News, Vol. 12, No. 3, International GEWEX Project Office, Silver Spring, MD, 6–7, https://www.gewex.org/gewex-content/files_mf/1432150042Aug2002.pdf.

  • Bosilovich, M. G., S. D. Schubert, and G. K. Walker, 2005: Global changes of the water cycle intensity. J. Climate, 18, 15911608, https://doi.org/10.1175/JCLI3357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Burde, G. I., and A. Zangvil, 2001: The estimation of regional precipitation recycling. Part I: Review of recycling models. J. Climate, 14, 24972508, https://doi.org/10.1175/1520-0442(2001)014<2497:TEORPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. D. Xu, S. Yang, and W. Zhang, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423435, https://doi.org/10.1007/s00704-012-0641-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X.-D. Xu, and T. Zhao, 2013: Main moisture sources affecting lower Yangtze River Basin in boreal summers during 2004–2009. Int. J. Climatol., 33, 10351046, https://doi.org/10.1002/joc.3495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104, 19 38319 397, https://doi.org/10.1029/1999JD900222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, https://doi.org/10.1175/2008JHM1016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., and P. Kumar, 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part I: Central U.S. Plains ecoregion. J. Climate, 21, 51655186, https://doi.org/10.1175/2008JCLI1756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X.-Z. Liang, and M. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, and E. R. Vivoni, 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Climate, 21, 51875203, https://doi.org/10.1175/2008JCLI1760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., G. Miguez-Macho, and H. Hu, 2016: WRF with water vapor tracers: A study of moisture sources for the North American monsoon. J. Hydrometeor., 17, 19151927, https://doi.org/10.1175/JHM-D-15-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., F. Chauvin, S. Planton, J.-F. Royer, D. Salas-Melia, and S. Tyteca, 2002: Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Climate Dyn., 20, 4568, https://doi.org/10.1007/s00382-002-0259-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, and L. Gimeno, 2011: A preliminary analysis of the sources of moisture for China and their variations during drier and wetter conditions in 2000–2004: A Lagrangian approach. Climate Res., 50, 215225, https://doi.org/10.3354/cr01043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, https://doi.org/10.1002/qj.49712051806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and et al. , 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., Y. Ding, J. He, and Q. Li, 2007: An analysis on anomalous precipitation in southern China during winter monsoon. Acta Meteor. Sin., 64, 594604.

    • Search Google Scholar
    • Export Citation
  • Hendriks, M. R., 2010: Introduction to Physical Hydrology. Oxford University Press, 352 pp.

  • Hoyos, I., F. Dominguez, J. Cannon-Barriga, J. A. Martinez, R. Nieto, L. Gimeno, and P. A. Dirmeyer, 2018: Moisture origin and transport processes in Colombia, northern South America. Climate Dyn., 50, 971990, https://doi.org/10.1007/s00382-017-3653-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American Monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, https://doi.org/10.1175/JHM-D-14-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., D. Jiang, X. Lang, and B. Xu, 2018: Moisture sources of the Chinese Loess Plateau during 1979–2009. Palaeogeogr. Palaeoclimatol. Palaeoecol., https://doi.org/10.1016/j.palaeo.2016.12.030, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ke, 2017a: Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theor. Appl. Climatol., 127, 513531, https://doi.org/10.1007/s00704-015-1645-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ma, 2017b: Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J. Geophys. Res. Atmos., 122, 12 52212 540, https://doi.org/10.1002/2017JD027728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and X. Cui, 2015: Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13. J. Hydrometeor., 16, 19061917, https://doi.org/10.1175/JHM-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Läderach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., 2016: Influence of the southern branch trough on plateau of southwestern China daily precipitation in wintertime (in Chinese). Plateau Meteor., 35 (6), 14561463.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., L. Gimeno, and R. M. Trigo, 2006: A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Lett., 33, L18707, https://doi.org/10.1029/2006GL027232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savenije, H. H. G., 2000: Water scarcity indicators; The deception of the numbers. Phys. Chem. Earth B, 25, 199204, https://doi.org/10.1016/S1464-1909(00)00004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, https://doi.org/10.5194/acp-5-2461-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2014: Moisture sources of semi-arid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 24572474, https://doi.org/10.1175/JCLI-D-13-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2015: Analysis of the major atmospheric moisture sources affecting three sub-regions of east China. Int. J. Climatol., 35, 22432257, https://doi.org/10.1002/joc.4145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694, https://doi.org/10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., R. W. A. Hutjes, and P. Kabat, 2012: The fate of evaporated water from the Ganges basin. J. Geophys. Res., 117, D01107, https://doi.org/10.1029/2011JD016221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., 2014: A new view on the hydrological cycle over continents. Ph.D. thesis, Delft University of Technology, 106 pp., https://doi.org/10.4233/uuid:0ab824ee-6956-4cc3-b530-3245ab4f32be.

    • Crossref
    • Export Citation
  • van der Ent, R. J., and H. H. G. Savenije, 2011: Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys., 11, 18531863, https://doi.org/10.5194/acp-11-1853-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and O. A. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije, 2014: Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling. Earth Syst. Dyn., 5, 471489, https://doi.org/10.5194/esd-5-471-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viste, E., and A. Sorteberg, 2013: Moisture transport into the Ethiopian highlands. Int. J. Climatol., 33, 249263, https://doi.org/10.1002/joc.3409.

  • Wang, N., X.-M. Zeng, W. D. Guo, C. Chen, W. You, Y. Zheng, and J. Zhu, 2018: Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-lower Yangtze River basin. J. Hydrol., 559, 252265, https://doi.org/10.1016/j.jhydrol.2018.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, M. G. Bosilovich, and R. Wu, 2012: Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res., 117, D05126, https://doi.org/10.1029/2011JD016902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., H. R. Knoche, and H. Kunstmann, 2016: Atmospheric residence times from transpiration and evaporation to precipitation: An age-weighted regional evaporation tagging approach. J. Geophys. Res. Atmos., 121, 68416862, https://doi.org/10.1002/2015JD024650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, M., Y. Yang, A. Kumar, and P. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rew., 137, 11111131, https://doi.org/10.1175/2008MWR2638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., T. Oki, N. Ohte, and S. Kanae, 2004: Colored moisture analysis estimates of variations in 1998 Asian monsoon water sources. J. Meteor. Soc. Japan, 82, 13151329, https://doi.org/10.2151/jmsj.2004.1315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X.-M., M. Wang, N. Wang, X. Yi, C. Chen, Z. Zhou, G. Wang, and Y. Zheng, 2018: Assessing simulated summer 10-m wind speed over China: Influencing processes and sensitivities to land surface schemes. Climate Dyn., 50, 41894209, https://doi.org/10.1007/s00382-017-3868-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Q. Li, 2014: Tracking the moisture sources of an extreme precipitation event in Shandong, China in July 2007: A computational analysis. J. Meteor. Res., 28, 634644, https://doi.org/10.1007/s13351-014-3084-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, and D. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 18071819, https://doi.org/10.1175/JCLI-D-15-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., G. Yu, Y. Qian, M. Miao, X. Zeng, and H. Liu, 2002: Simulations of regional climatic effects of vegetation change in China. Quart. J. Meteor. Soc., 128, 20892114, https://doi.org/10.1256/003590002320603557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X. X., Y. H. Ding, and P. X. Wang, 2008: Moisture transport in the Asian summer monsoon region and its relationship with summer precipitation in China (in Chinese). Acta Meteor. Sin., 24 (1), 3142.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 23
PDF Downloads 92 92 14

The Atmospheric Moisture Residence Time and Reference Time for Moisture Tracking over China

View More View Less
  • 1 College of Hydrology and Water Resources, Hohai University, and College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, Jiangsu, China
  • | 2 College of Hydrology and Water Resources, Hohai University, and Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China
  • | 3 College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, China
© Get Permissions
Restricted access

Abstract

This paper studies the atmospheric moisture residence times over China for the period 1980–2009 using the dynamic recycling model (DRM). We define both the residence times for atmospheric moisture of precipitation (backward tracking) and evaporation (forward tracking) and show that each has significant spatial and seasonal variations. The area-averaged precipitation-moisture residence time is approximately 8.3 days, while the evaporation residence time is approximately 6.3 days. In addition, we investigate the concept of “tracking time” or time selected for moisture tracking in numerical source–sink studies. The area-averaged backward and forward tracking times at the 90% threshold (i.e., when 90% of initial moisture is attributed for tracking) are approximately 22 and 15 days, respectively. Finally, we theoretically deduced the explicit expressions for residence and tracking times for idealized cases and found the analytical proportional relationship between these times. In this way, the analytical link between residence time and e-folding time was reestablished. This proportional relationship was further verified against the DRM-derived values. In the DRM results, the proportional relation generally fluctuates along the trajectory, which leads to the differences between the theoretical and the DRM-derived values. These results can enhance our understanding of water cycling, and they are likely to help choose tracking times in relevant studies.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin-Min Zeng, zen_xm@yahoo.com

Abstract

This paper studies the atmospheric moisture residence times over China for the period 1980–2009 using the dynamic recycling model (DRM). We define both the residence times for atmospheric moisture of precipitation (backward tracking) and evaporation (forward tracking) and show that each has significant spatial and seasonal variations. The area-averaged precipitation-moisture residence time is approximately 8.3 days, while the evaporation residence time is approximately 6.3 days. In addition, we investigate the concept of “tracking time” or time selected for moisture tracking in numerical source–sink studies. The area-averaged backward and forward tracking times at the 90% threshold (i.e., when 90% of initial moisture is attributed for tracking) are approximately 22 and 15 days, respectively. Finally, we theoretically deduced the explicit expressions for residence and tracking times for idealized cases and found the analytical proportional relationship between these times. In this way, the analytical link between residence time and e-folding time was reestablished. This proportional relationship was further verified against the DRM-derived values. In the DRM results, the proportional relation generally fluctuates along the trajectory, which leads to the differences between the theoretical and the DRM-derived values. These results can enhance our understanding of water cycling, and they are likely to help choose tracking times in relevant studies.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin-Min Zeng, zen_xm@yahoo.com
Save