Drought Variability and Trends over the Central United States in the Instrumental Record

Kingtse C. Mo NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Kingtse C. Mo in
Current site
Google Scholar
PubMed
Close
and
Dennis P. Lettenmaier Department of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We examined drought variability and trends over the last century (1916–2013) over the conterminous United States (CONUS) using observed precipitation P, temperature T, and reconstructed total moisture percentiles (TMP) and runoff from four land surface models. We used an integrated drought index (IDI), which we defined as the equally weighted mean of the 3-month standardized runoff index (SRI3) and TMP from four land surface models mapped onto a uniform probability distribution. Using a definition of drought as IDI less than 0.3 for 6 months or longer, we identified 16 drought events, which we termed great droughts that covered more than 50% of the CONUS during our study period. We examined the properties of great droughts and compared these with the 2012 event. The great droughts were located at least partially over the central United States (30°–42°N, 85°–110°W). We found that 12 of these great droughts occurred when cold sea surface temperature anomalies (SSTAs) were located in the tropical Pacific with warm SSTAs in the North Atlantic. We also found a predominance of decreasing trends in IDI; droughts occurred less often and events were less severe as time progressed. In particular, only 2 of the 16 great droughts (2012 and 1988) occurred in the second half of the record.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dennis P. Lettenmaier, dlettenm@ucla.edu

Abstract

We examined drought variability and trends over the last century (1916–2013) over the conterminous United States (CONUS) using observed precipitation P, temperature T, and reconstructed total moisture percentiles (TMP) and runoff from four land surface models. We used an integrated drought index (IDI), which we defined as the equally weighted mean of the 3-month standardized runoff index (SRI3) and TMP from four land surface models mapped onto a uniform probability distribution. Using a definition of drought as IDI less than 0.3 for 6 months or longer, we identified 16 drought events, which we termed great droughts that covered more than 50% of the CONUS during our study period. We examined the properties of great droughts and compared these with the 2012 event. The great droughts were located at least partially over the central United States (30°–42°N, 85°–110°W). We found that 12 of these great droughts occurred when cold sea surface temperature anomalies (SSTAs) were located in the tropical Pacific with warm SSTAs in the North Atlantic. We also found a predominance of decreasing trends in IDI; droughts occurred less often and events were less severe as time progressed. In particular, only 2 of the 16 great droughts (2012 and 1988) occurred in the second half of the record.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dennis P. Lettenmaier, dlettenm@ucla.edu
Save
  • Andreadis, K. M., and D. P. Lettenmaier, 2006: Trends in 20th century drought over the continental United States. Geophys. Res. Lett., 33, L10403, https://doi.org/10.1029/2006GL025711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. Hamlet, and D. P. Lettenmaier, 2005: Twentieth century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, https://doi.org/10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought and stream flow. J. Climate, 14, 21052128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. Forest Meteor., 176, 3849, https://doi.org/10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., R. L. Ferral, and R. A. McGuire, 1973: A generalized streamflow simulation system: Conceptual modeling for digital computers. Joint Federal-State River Forecast Center, NWS, and California Department of Water Resources Tech. Rep., 204 pp.

  • Cayan, D. R., and K. T. Redmond, 1994: ENSO influences on atmospheric circulation and precipitation in the western United States. Proc. 10th Annual Pacific Climate (PACLIM) Workshop, Pacific Grove, CA, California Department of Water Resources, 5–26.

  • Coats, S., B. I. Cook, J. E. Smerdon, and R. Seager, 2015: North American pancontinental droughts in model simulations of the last millennium. J. Climate, 28, 20252043, https://doi.org/10.1175/JCLI-D-14-00634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, https://doi.org/10.1175/BAMS-87-2-175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cook, B. I., J. E. Smerdon, R. Seager, and E. R. Cook, 2014a: Pan Continental droughts in North America over the last millennium. J. Climate, 27, 383397, https://doi.org/10.1175/JCLI-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. Seager, and J. E. Smerdon, 2014b: The worst North American drought year of the last millennium: 1934. Geophys. Res. Lett., 41, 72987305, https://doi.org/10.1002/2014GL061661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162, https://doi.org/10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., R. D. Koster, M. J. Suarez, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model. J. Geophys. Res., 105, 24 82324 838, https://doi.org/10.1029/2000JD900328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, B. A., D. A. Wood, and D. Ebbeka, 2015: From too much to too little: How the central U.S. drought of 2012 evolving out of one of the most devastating floods on record in 2011. Drought Mitigation Center Faculty Publication 118, 99 pp., https://digitalcommons.unl.edu/droughtfacpub/118/.

  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, https://doi.org/10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., and J. R. Slack, 1984: A nonparametric trend test for seasonal data with series dependence. Water Resour. Res., 20, 727732, https://doi.org/10.1029/WR020i006p00727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., J. R. Slack, and R. A. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107121, https://doi.org/10.1029/WR018i001p00107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. J., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik, 2012: Drought indicators based on model assimilated gravity recovery and climate experiment terrestrial water storage observations. Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180, https://doi.org/10.1175/1520-0477-83.8.1167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q. Duan, F. Chen, and J. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, https://doi.org/10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., E. F. Wood, and J. R. Wallis, 1994: Hydro-climatological trends in the continental United States, 1948–1988. J. Climate, 7, 586606, https://doi.org/10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and J. Williams, 1978: The correlation between temperature and precipitation in the United States and Europe. Mon. Wea. Rev., 106, 142147, https://doi.org/10.1175/1520-0493(1978)106<0142:TCBTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., J. L. Betancourt, S. T. Gray, M. A. Palecki, and H. G. Hidalgo, 2008: Association of multi-decadal sea-surface temperature variability with US drought. Quat. Int., 188, 3140, https://doi.org/10.1016/j.quaint.2007.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales. Preprints, Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 233–236.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9, 12121230, https://doi.org/10.1175/2008JHM1002.1.

  • Mo, K. C., and D. P. Lettenmaier, 2014: Objective drought classification using multiple land surface models. J. Hydrometeor., 15, 9901010, https://doi.org/10.1175/JHM-D-13-071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and P. D. Lettenmaier, 2016: Precipitation deficit flash droughts over the United States. J. Hydrometeor., 17, 11691184, https://doi.org/10.1175/JHM-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. N. Paegle, and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, https://doi.org/10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. E. Schemm, and S. H. Yoo, 2009: ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Climate, 22, 59625982, https://doi.org/10.1175/2009JCLI2966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 2016: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett., 43, 10 98010 988, https://doi.org/10.1002/2016GL069965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., B. Guan, and A. Ruis-Barradas, 2011: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713, https://doi.org/10.1029/2011GL048650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippey, B. R., 2015: The U.S. drought of 2012. Wea. Climate Extremes, 10A, 5764, https://doi.org/10.1016/j.wace.2015.10.004.

  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Nino/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and A. W. Wood, 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, https://doi.org/10.1029/2007GL032487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, https://doi.org/10.1007/s11069-013-0566-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., D. LeComte, M. Hayes, R. Heim, and K. Gleason, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 112, 23592368, https://doi.org/10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, https://doi.org/10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., T. J. Bohn, S. P. Mahanama, R. D. Koster, and D. P. Lettenmaier, 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, https://doi.org/10.1175/2008JCLI2586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2006: Drought monitoring, mitigation and preparedness in United States: An end to end approach. WMO Task Force on Social-Economic Application of Public Weather Services, Geneva, Switzerland, WMO, 23 pp., https://www.wmo.int/pages/prog/amp/pwsp/documents/Wilhite_WMO_Drought_PWS.pdf.

  • Xia, Y., D. Mocko, M. Huang, B. Li, M. Rodell, K. E. Mitchell, X. Cai, and M. B. Ek, 2017: Comparison and assessment on three advanced land surface models in simulating terrestrial water storage components over the United States. J. Hydrometeor., 18, 625649, https://doi.org/10.1175/JHM-D-16-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, M., B. Nijssen, and D. P. Lettenmaier, 2016: Drought in the Pacific Northwest, 1920–2013. J. Hydrometeor., 17, 23912404, https://doi.org/10.1175/JHM-D-15-0142.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., and M. A. K. Khalil, 1993: The relationship between precipitation and temperature over the contiguous United States. J. Climate, 6, 12321236, https://doi.org/10.1175/1520-0442(1993)006<1232:TRBPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 439 167 7
PDF Downloads 251 59 5