Identification of Hydrologic Models, Optimized Parameters, and Rainfall Inputs Consistent with In Situ Streamflow and Rainfall and Remotely Sensed Soil Moisture

Ashley J. Wright Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

Search for other papers by Ashley J. Wright in
Current site
Google Scholar
PubMed
Close
,
Jeffrey P. Walker Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

Search for other papers by Jeffrey P. Walker in
Current site
Google Scholar
PubMed
Close
, and
Valentijn R. N. Pauwels Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

Search for other papers by Valentijn R. N. Pauwels in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An increased understanding of the uncertainties present in rainfall time series can lead to improved confidence in both short- and long-term streamflow forecasts. This study presents an analysis that considers errors arising from model input data, model structure, model parameters, and model states with the objective of finding a self-consistent set that includes hydrological models, model parameters, streamflow, remotely sensed (RS) soil moisture (SM), and rainfall. This methodology can be used by hydrologists to aid model and satellite selection. Taking advantage of model input data reduction and model inversion techniques, this study uses a previously developed methodology to estimate areal rainfall time series for the study catchment of Warwick, Australia, for multiple rainfall–runoff models. RS SM observations from the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) satellites were assimilated into three different rainfall–runoff models using an ensemble Kalman filter (EnKF). Innovations resulting from the observed and predicted SM were analyzed for Gaussianity. The findings demonstrate that consistency between hydrological models, model parameters, streamflow, RS SM, and rainfall can be found. Joint estimation of rainfall time series and model parameters consistently improved streamflow simulations. For all models rainfall estimates are less than the observed rainfall, and rainfall estimates obtained using the Sacramento Soil Moisture Accounting (SAC-SMA) model are the most consistent with gauge-based observations. The SAC-SMA model simulates streamflow that is most consistent with observations. EnKF innovations obtained when SMOS RS SM observations were assimilated into the SAC-SMA model demonstrate consistency between SM products.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashley J. Wright, ashley.wright@monash.edu

Abstract

An increased understanding of the uncertainties present in rainfall time series can lead to improved confidence in both short- and long-term streamflow forecasts. This study presents an analysis that considers errors arising from model input data, model structure, model parameters, and model states with the objective of finding a self-consistent set that includes hydrological models, model parameters, streamflow, remotely sensed (RS) soil moisture (SM), and rainfall. This methodology can be used by hydrologists to aid model and satellite selection. Taking advantage of model input data reduction and model inversion techniques, this study uses a previously developed methodology to estimate areal rainfall time series for the study catchment of Warwick, Australia, for multiple rainfall–runoff models. RS SM observations from the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) satellites were assimilated into three different rainfall–runoff models using an ensemble Kalman filter (EnKF). Innovations resulting from the observed and predicted SM were analyzed for Gaussianity. The findings demonstrate that consistency between hydrological models, model parameters, streamflow, RS SM, and rainfall can be found. Joint estimation of rainfall time series and model parameters consistently improved streamflow simulations. For all models rainfall estimates are less than the observed rainfall, and rainfall estimates obtained using the Sacramento Soil Moisture Accounting (SAC-SMA) model are the most consistent with gauge-based observations. The SAC-SMA model simulates streamflow that is most consistent with observations. EnKF innovations obtained when SMOS RS SM observations were assimilated into the SAC-SMA model demonstrate consistency between SM products.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashley J. Wright, ashley.wright@monash.edu
Save
  • Adamovic, M., I. Braud, F. Branger, and J. Kirchner, 2015: Assessing the simple dynamical systems approach in a Mediterranean context: Application to the Arèche catchment (France). Hydrol. Earth Syst. Sci., 19, 24272449, https://doi.org/10.5194/hess-19-2427-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., T. Moramarco, F. Melone, and W. Wagner, 2013: A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett., 40, 853858, https://doi.org/10.1002/grl.50173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, https://doi.org/10.1002/2014JD021489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2015: Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm. J. Hydrol. Hydromech., 63, 201209, https://doi.org/10.1515/johh-2015-0016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciabatta, L., L. Brocca, C. Massari, T. Moramarco, S. Puca, A. Rinollo, S. Gabellani, and W. Wagner, 2015: Integration of satellite soil moisture and rainfall observations over the Italian territory. J. Hydrometeor., 16, 13411355, https://doi.org/10.1175/JHM-D-14-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., 2007: A novel method for quantifying value in spaceborne soil moisture retrievals. J. Hydrometeor., 8, 5667, https://doi.org/10.1175/JHM553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., G. J. Huffman, R. Bindlish, and T. J. Jackson, 2009: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals. J. Hydrometeor., 10, 199212, https://doi.org/10.1175/2008JHM986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., M. Van Den Berg, G. Huffman, and T. Pellarin, 2011: Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res., 47, W08521, https://doi.org/10.1029/2011WR010576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSIRO, 2017: ASRIS: Australian Soil Resource Information System. CSIRO, http://www.asris.csiro.au.

  • de Jeu, R., and M. Owe, 2011: AMSR-E/Aqua surface soil moisture (LPRM) L3 1 day 25 km × 25 km descending V002. GES DISC, accessed 22 November 2016, https://doi.org/10.5067/MXL0MFDHWP07.

    • Crossref
    • Export Citation
  • Draper, C. S., J. P. Walker, P. J. Steinle, R. A. de Jeu, and T. R. Holmes, 2009: An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ., 113, 703710, https://doi.org/10.1016/j.rse.2008.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., and D. B. Rubin, 1992: Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457472, https://doi.org/10.1214/ss/1177011136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hino, M., 1986: Improvements in the inverse estimation method of effective rainfall from runoff. J. Hydrol., 83, 137147, https://doi.org/10.1016/0022-1694(86)90188-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavetski, D., G. Kuczera, and S. Franks, 2006a: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res., 42, W03407, https://doi.org/10.1029/2005WR004368.

    • Search Google Scholar
    • Export Citation
  • Kavetski, D., G. Kuczera, and S. Franks, 2006b: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour. Res., 42, W03408, https://doi.org/10.1029/2005WR004376.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J., 2009: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res., 45, W02429, https://doi.org/10.1029/2008WR006912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing earth system science. Bull. Amer. Meteor. Soc., 94, 365375, https://doi.org/10.1175/BAMS-D-11-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, D., Y. Kerr, A. Bitar, R. Bindlish, T. Jackson, B. Berthelot, and G. Portet, 2014: Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in U.S. IEEE Trans. Geosci. Remote Sens., 52, 15621571, https://doi.org/10.1109/TGRS.2013.2252468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., S. Grimaldi, J. Walker, and V. Pauwels, 2016: Application of remote sensing data to constrain operational rainfall-driven flood forecasting: A review. Remote Sens., 8, 456, https://doi.org/10.3390/rs8060456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and H. Gupta, 2007: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006WR005756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ly, S., C. Charles, and A. Degré, 2011: Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci., 15, 22592274, https://doi.org/10.5194/hess-15-2259-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., L. Brocca, T. Moramarco, Y. Tramblay, and J.-F. D. Lescot, 2014: Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall. Adv. Water Resour., 74, 4453, https://doi.org/10.1016/j.advwatres.2014.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillan, H., and Coauthors, 2017: How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications. Water Resour. Res., 53, 52205228, https://doi.org/10.1002/2016WR020328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R., 2007: The PDM rainfall-runoff model. Hydrol. Earth Syst. Sci., 11, 483499, https://doi.org/10.5194/hess-11-483-2007.

  • Moradkhani, H., S. Sorooshian, H. Gupta, and P. Houser, 2005: Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour., 28, 135147, https://doi.org/10.1016/j.advwatres.2004.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neuman, S., 2003: Maximum likelihood Bayesian averaging of uncertain model predictions. Stochastic Environ. Res. Risk Assess., 17, 291305, https://doi.org/10.1007/s00477-003-0151-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWSRFS, 2002: Conceptualization of the Sacramento Soil Moisture Accounting Model. National Weather Service River Forecast System User’s Manual, Part II, 13 pp., http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/23sacsma.pdf.

  • Oudin, L., C. Perrin, T. Mathevet, V. Andrassian, and C. Michel, 2006: Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J. Hydrol., 320, 6283, https://doi.org/10.1016/j.jhydrol.2005.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., 2008: A multistart weight-adaptive recursive parameter estimation method. Water Resour. Res., 44, W04416, https://doi.org/10.1029/2007WR005866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., and G. J. M. De Lannoy, 2015: Error covariance calculation for forecast bias estimation in hydrologic data assimilation. Adv. Water Resour., 86B, 284296, https://doi.org/10.1016/j.advwatres.2015.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peck, E., 1976: Catchment modeling and initial parameter estimation for the National Weather Service River Forecast System. NOAA Tech Memo. NWS HYDRO-31, 69 pp., http://www.nws.noaa.gov/oh/hdsc/Technical_memoranda/TM31.pdf.

  • Pellarin, T., A. Ali, F. Chopin, I. Jobard, and J.-C. Bergs, 2008: Using spaceborne surface soil moisture to constrain satellite precipitation estimates over West Africa. Geophys. Res. Lett., 35, L02813, https://doi.org/10.1029/2007GL032243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., S. Louvet, C. Gruhier, G. Quantin, and C. Legout, 2013: A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ., 136, 2836, https://doi.org/10.1016/j.rse.2013.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queensland Government, 2017: Water monitoring information portal. https://water-monitoring.information.qld.gov.au/.

  • Raupach, M., P. Briggs, V. Haverd, E. King, M. Paget, and C. Trudinger, 2012: Australian Water Availability Project. CSIRO, http://www.csiro.au/awap.

  • Rawls, W. J., D. Brakensiek, and K. Saxton, 1982: Estimation of soil water properties. Trans. ASAE, 25, 13161320, https://doi.org/10.13031/2013.33720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., D. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114, https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. Franks, 2010: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res., 46, W05521, https://doi.org/10.1029/2009WR008328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. Franks, 2011: Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resour. Res., 47, W11516, https://doi.org/10.1029/2011WR010643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samain, B., and V. Pauwels, 2013: Impact of potential and (scintillometer-based) actual evapotranspiration estimates on the performance of a lumped rainfall-runoff model. Hydrol. Earth Syst. Sci., 17, 45254540, https://doi.org/10.5194/hess-17-4525-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebbs, E., F. Gerard, A. Petrie, and E. De Witte, 2016: Emerging and potential future applications of satellite-based soil moisture products. Satellite Soil Moisture Retrieval: Techniques and Applications, Elsevier, 379–400, https://doi.org/10.1016/B978-0-12-803388-3.00019-X.

    • Crossref
    • Export Citation
  • Teuling, A., I. Lehner, J. Kirchner, and S. Seneviratne, 2010: Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment. Water Resour. Res., 46, W10502, https://doi.org/10.1029/2009WR008777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian, 2001: Bayesian recursive parameter estimation for hydrologic models. Water Resour. Res., 37, 25212535, https://doi.org/10.1029/2000WR900405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J., 2016: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environ. Modell. Software, 75, 273316, https://doi.org/10.1016/j.envsoft.2015.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J., and C. Ter Braak, 2011: DREAM(D): An adaptive Markov chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems. Hydrol. Earth Syst. Sci., 15, 37013713, https://doi.org/10.5194/hess-15-3701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J., H. V. Gupta, W. Bouten, and S. Sorooshian, 2003: A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002WR001642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J., C. Diks, H. Gupta, W. Bouten, and J. Verstraten, 2005: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res., 41, W01017, https://doi.org/10.1029/2004WR003059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J., C. Ter Braak, M. Clark, J. Hyman, and B. Robinson, 2008: Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov Chain Monte Carlo simulation. Water Resour. Res., 44, W00B09, https://doi.org/10.1029/2007WR006720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, A. J., J. P. Walker, D. E. Robertson, and V. R. N. Pauwels, 2017a: A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction. Hydrol. Earth Syst. Sci., 21, 38273838, https://doi.org/10.5194/hess-21-3827-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, A. J., J. P. Walker, and V. R. N. Pauwels, 2017b: Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques. Water Resour. Res., 53, 64076424, https://doi.org/10.1002/2017WR020442.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1087 425 123
PDF Downloads 714 171 7