Evaluating Soil Moisture–Precipitation Interactions Using Remote Sensing: A Sensitivity Analysis

Trent W. Ford Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois

Search for other papers by Trent W. Ford in
Current site
Google Scholar
PubMed
Close
,
Steven M. Quiring Department of Geography, Ohio State University, Columbus, Ohio

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
,
Balbhadra Thakur Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, Illinois

Search for other papers by Balbhadra Thakur in
Current site
Google Scholar
PubMed
Close
,
Rohit Jogineedi Department of Mechanical Engineering, Southern Illinois University, Carbondale, Illinois

Search for other papers by Rohit Jogineedi in
Current site
Google Scholar
PubMed
Close
,
Adam Houston Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Adam Houston in
Current site
Google Scholar
PubMed
Close
,
Shanshui Yuan Department of Geography, Ohio State University, Columbus, Ohio

Search for other papers by Shanshui Yuan in
Current site
Google Scholar
PubMed
Close
,
Ajay Kalra Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, Illinois

Search for other papers by Ajay Kalra in
Current site
Google Scholar
PubMed
Close
, and
Noah Lock Weather Decision Technologies, Norman, Oklahoma

Search for other papers by Noah Lock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The complex interactions between soil moisture and precipitation are difficult to observe, and consequently there is a lack of consensus as to the sign, strength, and location of these interactions. Inconsistency between soil moisture–precipitation interaction studies can be attributed to a multitude of factors, including the difficulty of demonstrating causal relationships, dataset differences, and precipitation autocorrelation. The purpose of this study is to explore these potential confounding factors and determine which are most important for consideration when assessing statistical coupling between soil moisture and precipitation. Soil moisture is assessed via three remote sensing datasets: the Advanced Microwave Scanning Radiometer for Earth Observing System, the Tropical Rainfall Measuring Mission Microwave Imager, and the Essential Climate Variable Soil Moisture. Estimates of soil moisture are coupled with afternoon thunderstorm events identified by the Thunderstorm Observation by Radar (ThOR) algorithm, and dry soil or wet soil preferences for convection initiation are determined for over 16 000 thunderstorm events between 2005 and 2007. Differences in soil moisture datasets were found to have the largest impact with regard to determining wet or dry soil preferences. Precipitation autocorrelation is prevalent in the data; however, precipitation autocorrelation did not influence the results with regard to dry or wet soil preferences. Consideration of the convective environment (i.e., weakly or synoptically forced) did result in significant differences in wet/dry soil preference, but only for certain soil moisture datasets. The results suggest that observation-driven soil moisture–precipitation interaction studies should both consider the convective environment and implement multiple soil moisture datasets to assure robust results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Trent W. Ford, twford@siu.edu

Abstract

The complex interactions between soil moisture and precipitation are difficult to observe, and consequently there is a lack of consensus as to the sign, strength, and location of these interactions. Inconsistency between soil moisture–precipitation interaction studies can be attributed to a multitude of factors, including the difficulty of demonstrating causal relationships, dataset differences, and precipitation autocorrelation. The purpose of this study is to explore these potential confounding factors and determine which are most important for consideration when assessing statistical coupling between soil moisture and precipitation. Soil moisture is assessed via three remote sensing datasets: the Advanced Microwave Scanning Radiometer for Earth Observing System, the Tropical Rainfall Measuring Mission Microwave Imager, and the Essential Climate Variable Soil Moisture. Estimates of soil moisture are coupled with afternoon thunderstorm events identified by the Thunderstorm Observation by Radar (ThOR) algorithm, and dry soil or wet soil preferences for convection initiation are determined for over 16 000 thunderstorm events between 2005 and 2007. Differences in soil moisture datasets were found to have the largest impact with regard to determining wet or dry soil preferences. Precipitation autocorrelation is prevalent in the data; however, precipitation autocorrelation did not influence the results with regard to dry or wet soil preferences. Consideration of the convective environment (i.e., weakly or synoptically forced) did result in significant differences in wet/dry soil preference, but only for certain soil moisture datasets. The results suggest that observation-driven soil moisture–precipitation interaction studies should both consider the convective environment and implement multiple soil moisture datasets to assure robust results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Trent W. Ford, twford@siu.edu
Save
  • Albergel, C., P. de Rosnay, C. Gruhier, J. Muñoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr, and W. Wagner, 2012: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ., 118, 215226, https://doi.org/10.1016/j.rse.2011.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, L., P. Claps, P. D’Odorico, F. Laio, and T. M. Over, 2008: An analysis of the soil moisture feedback on convective and stratiform precipitation. J. Hydrometeor., 9, 280291, https://doi.org/10.1175/2007JHM863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindlish, R., T. J. Jackson, E. Wood, H. Gao, P. Starks, D. Bosch, and V. Lakshmi, 2003: Soil moisture estimates from TRMM Microwave Imager observations over the southern United States. Remote Sens. Environ., 85, 507515, https://doi.org/10.1016/S0034-4257(03)00052-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Brimelow, J. C., J. M. Hanesiak, and W. R. Burrows, 2011: Impacts of land–atmosphere feedbacks on deep, moist convection on the Canadian Prairies. Earth Interact., 15, https://doi.org/10.1175/2011EI407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and D. L. Arnold, 1998: Land-surface–atmosphere interactions associated with deep convection in Illinois. Int. J. Climatol., 18, 16371653, https://doi.org/10.1002/(SICI)1097-0088(199812)18:15<1637::AID-JOC336>3.0.CO;2-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., D. L. Arnold, D. J. Travis, S. Curran, and J. O. Adegoke, 2008a: Synoptic circulation and land surface influences on convection in the Midwest U.S. “corn belt” during the summers of 1999 and 2000. Part I: Composite synoptic environments. J. Climate, 21, 33893415, https://doi.org/10.1175/2007JCLI1578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., D. J. Travis, J. O. Adegoke, D. L. Arnold, and S. Curran, 2008b: Synoptic circulation and land surface influences on convection in the Midwest US “corn belt” during the summers of 1999 and 2000. Part II: Role of vegetation boundaries. J. Climate, 21, 36173641, https://doi.org/10.1175/2007JCLI1584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeor., 17, 10491067, https://doi.org/10.1175/JHM-D-15-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., and T. L. Mote, 2003: Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J. Appl. Meteor., 42, 12731284, https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380395, https://doi.org/10.1016/j.rse.2014.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the-art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and E. F. Wood, 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, https://doi.org/10.1175/2011JHM1380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015a: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015b: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, https://doi.org/10.5194/hess-19-3617-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., Q. Wang, and S. M. Quiring, 2016: The observation record length necessary to generate robust soil moisture percentiles. J. Appl. Met. Climatol., 55, 21312149, https://doi.org/10.1175/JAMC-D-16-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2012: Observations of mergers between squall lines and isolated supercell thunderstorms. Wea. Forecasting, 27, 255278, https://doi.org/10.1175/WAF-D-11-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frye, J. D., and T. L. Mote, 2010: Convection initiation along soil moisture boundaries in the southern Great Plains. Mon. Wea. Rev., 138, 11401151, https://doi.org/10.1175/2009MWR2865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., E. F. Wood, T. J. Jackson, M. Drusch, and R. Bindlish, 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J. Hydrometeor., 7, 2338, https://doi.org/10.1175/JHM473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., and Coauthors, 2014: Land-surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors. Atmos. Chem. Phys., 14, 83438367, https://doi.org/10.5194/acp-14-8343-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., B. Mueller, W. Dorigo, and S. I. Seneviratne, 2014: Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens. Environ., 154, 246252, https://doi.org/10.1016/j.rse.2014.08.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., N. A. Lock, J. Lahowetz, B. L. Barjenbruch, G. Limpert, and C. Oppermann, 2015: Thunderstorm Observation by Radar (ThOR): An algorithm to develop a climatology of thunderstorms. J. Atmos. Oceanic Technol., 32, 961981, https://doi.org/10.1175/JTECH-D-14-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H., M.-H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar, 2017: Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns. J. Geophys. Res. Atmos., 122, 63196328, https://doi.org/10.1002/2016JD026042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., M. Xue, and R. A. McPherson, 2017: The importance of soil-type contrast in modulating August precipitation distribution new the Edwards Plateau and Balcones Escarpment in Texas. J. Geophys. Res. Atmos., 122, 10 71110 728, https://doi.org/10.1002/2017JD027035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, C. A. Fiebrich, K. C. Crawford, E. Hunt, D. K. Fisher, R. Elliott, and K. Humes, 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182, https://doi.org/10.1175/2007JTECHA993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khong, A., J. K. Wang, S. M. Quiring, and T. W. Ford, 2015: Soil moisture variability in Iowa. Int. J. Climatol., 35, 28372848, https://doi.org/10.1002/joc.4176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R. R., R. Mahmood, D. F. Levia, T. L. DeLiberty, S. M. Quiring, C. Houser, and F. E. Nelson, 2011: Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr., 35, 6586, https://doi.org/10.1177/0309133310386514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., W. A. Dorigo, R. M. Parinussa, R. A. M. de Jeu, W. Wagner, M. F. McCabe, J. P. Evans, and A. I. J. M. van Dijk, 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280297, https://doi.org/10.1016/j.rse.2012.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240258, https://doi.org/10.1175/MWR-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2015: Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007. Int. J. Climatol., 35, 40474056, https://doi.org/10.1002/joc.4261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., 2007: A review of vegetation—Atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr., 31, 261285, https://doi.org/10.1177/0309133307079055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. van den Berg, A. J. Teuling, and R. A. M. de Jeu, 2012: Soil moisture-temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012GL053703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chang, and S. V. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229, https://doi.org/10.1109/TGRS.2002.808243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owe, M., R. de Jeu, and T. Holmes, 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, https://doi.org/10.1029/2007JF000769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, L. S., J. A. Stallins, and M. L. Bentley, 2008: Concurrent cloud-to-ground lightning and precipitation enhancement in the Atlanta, Georgia (United States), urban region. Earth Interact., 12, https://doi.org/10.1175/2008EI265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., J. A. Saleem, and R. Kaufmann, 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25, 13051312, https://doi.org/10.1016/S0309-1708(02)00057-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, B. L., T. E. Ochsner, B. G. Illston, C. A. Fiebrich, J. B. Basara, and A. J. Sutherland, 2013: New soil property database improves Oklahoma Mesonet soil moisture estimates. J. Atmos. Oceanic Technol., 30, 25852595, https://doi.org/10.1175/JTECH-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C., D. Ryu, R. I. Young, A. W. Western, and W. Wagner, 2013: Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia. Remote Sens. Environ., 134, 111, https://doi.org/10.1016/j.rse.2013.02.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, https://doi.org/10.1038/ngeo1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S. E., and G. D. Salvucci, 2014: A new approach for validating satellite estimates of soil moisture using large-scale precipitation: Comparing AMSR-E products. Remote Sens. Environ., 142, 207222, https://doi.org/10.1016/j.rse.2013.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S. E., and G. D. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, https://doi.org/10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S. E., and G. D. Salvucci, 2017: Confounding factors in determining causal soil moisture–precipitation feedback. Water Resour. Res., 53, 55315544, https://doi.org/10.1002/2016WR019869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., R. E. Dickinson, and H. Chen, 2008: A negative soil moisture–precipitation relationship and its causes. J. Hydrometeor., 9, 13641376, https://doi.org/10.1175/2008JHM955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1999: Multisite downscaling of daily precipitation with a stochastic weather generator. Climate Res., 11, 125136, https://doi.org/10.3354/cr011125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., J. Wen, X. Wang, J. Dongyu, and J. Chen, 2016: Analysis of the Qinghai-Xizang Plateau monsoon evolution and its linkages with soil moisture. Remote Sens., 8, 493, https://doi.org/10.3390/rs8060493.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1395 465 112
PDF Downloads 1028 180 11