Abstract
This study evaluates the May and October 2015 flood prediction skill of a physically based model resembling the U.S. National Water Model (NWM) over the Texas Hill Country. It also investigates hydrometeorological factors that contributed to a record flood along the Blanco River at Wimberley (WMBT2) in May 2015. Using two radar-based quantitative precipitation estimation (QPE) products—Stage IV and Multi-Radar Multi-Sensor (MRMS)—it is shown that the event precipitation accuracy dominates the prediction skill, where the finer-resolution MRMS QPE mainly benefits basins with small drainage areas. Overall, the model exhibits good performance at gauges with fast flood response from causative rainfall and gauges that are not forecast points in the National Weather Service’s Advanced Hydrometeorological Prediction System, showing great promise for forecasts, warnings, and emergency response. However, the model suffers from poor prediction skill over regions without rapid flood response and regions with human-altered flows, suggesting the need to revisit the channel routing algorithm and incorporate modules to represent human alterations. Two contrasting flood events at WMBT2 with similar meteorological characteristics are examined in greater detail, revealing that the location of intense rainfall combined with land physiographic features are key to the flood response differences. Model sensitivity tests further show the record flood peak could be better obtained by tuning the deep-layer soil wetness and the flow velocity field in the river network, which offers hydrometeorological insights into the causes and the complex nature of such a flood and why the model struggles to predict the record flood peak.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0038.s1.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).