Assessment of Radiative Forcing by Light-Absorbing Particles in Snow from In Situ Observations with Radiative Transfer Modeling

S. McKenzie Skiles Department of Geography, University of Utah, Salt Lake City, Utah

Search for other papers by S. McKenzie Skiles in
Current site
Google Scholar
PubMed
Close
and
Thomas H. Painter Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Thomas H. Painter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is well established that episodic deposition of dust on mountain snow reduces snow albedo and impacts snow hydrology in the western United States, particularly in the Colorado Rockies, which are headwaters for the Colorado River. Until recently the snow observations needed to physically quantify radiative forcing (RF) by dust on snow were lacking, and analysis of impacts used a semiempirical relationship between snow optical properties and observed surface reflectance. Here, we present a physically based daily time series of RF by dust and black carbon (BC) in snow at Senator Beck Basin Study Area, Colorado. Over the 2013 ablation season (March–May), a snow–aerosol radiative transfer model was forced with near daily measured snow property inputs (density, effective grain size, and dust/BC concentrations) and validated with coincidentally measured spectral albedo. Over the measurement period, instantaneous RF by dust and BC in snow ranged from 0.25 to 525 W m−2, with daily averages ranging from 0 to 347 W m−2. Dust dominated particulate mass, accounting for more than 90% of RF. The semiempirical RF values, which constitute the continuous long-term record, compared well to the physically based RF values; over the full time series, daily reported semiempirical RF values were 8 W m−2 higher on average, with a root-mean-square difference of 16 W m−2.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. McKenzie Skiles, m.skiles@geog.utah.edu

Abstract

It is well established that episodic deposition of dust on mountain snow reduces snow albedo and impacts snow hydrology in the western United States, particularly in the Colorado Rockies, which are headwaters for the Colorado River. Until recently the snow observations needed to physically quantify radiative forcing (RF) by dust on snow were lacking, and analysis of impacts used a semiempirical relationship between snow optical properties and observed surface reflectance. Here, we present a physically based daily time series of RF by dust and black carbon (BC) in snow at Senator Beck Basin Study Area, Colorado. Over the 2013 ablation season (March–May), a snow–aerosol radiative transfer model was forced with near daily measured snow property inputs (density, effective grain size, and dust/BC concentrations) and validated with coincidentally measured spectral albedo. Over the measurement period, instantaneous RF by dust and BC in snow ranged from 0.25 to 525 W m−2, with daily averages ranging from 0 to 347 W m−2. Dust dominated particulate mass, accounting for more than 90% of RF. The semiempirical RF values, which constitute the continuous long-term record, compared well to the physically based RF values; over the full time series, daily reported semiempirical RF values were 8 W m−2 higher on average, with a root-mean-square difference of 16 W m−2.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. McKenzie Skiles, m.skiles@geog.utah.edu
Save
  • Adolph, A. C., M. R. Albert, J. Lazarcik, J. E. Dibb, J. M. Amante, and A. Price, 2017: Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire. J. Geophys. Res. Atmos., 122, 121139, https://doi.org/10.1002/2016JD025362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 2767, https://doi.org/10.1080/02786820500421521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryant, A., T. H. Painter, J. Deems, and S. M. Bender, 2013: Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the upper Colorado River basin. Geophys. Res. Lett., 40, 39453949, https://doi.org/10.1002/grl.50773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deems, J., T. H. Painter, J. Barsugli, J. Belnap, and B. Udall, 2013: Combined impacts of current and future dust deposition and regional warming on Colorado River basin snow dynamics and hydrology. Hydrol. Earth Syst. Sci., 17, 44014413, https://doi.org/10.5194/hess-17-4401-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delaney, I., S. Kaspari, and M. Jenkins, 2015: Black carbon concentrations in snow at Tronsen Meadow in Central Washington from 2012 to 2013: Temporal and spatial variations and the role of local forest fire activity. J. Geophys. Res. Atmos., 120, 91609172, https://doi.org/10.1002/2015JD023762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, S. J., C. Dang, D. A. Hegg, R. Zhang, and S. G. Warren, 2014: Black carbon and other light‐absorbing particles in snow of central North America. J. Geophys. Res. Atmos., 119, 12 80712 831, https://doi.org/10.1002/2014JD022350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, S. J., D. A. Hegg, J. E. Johnson, P. K. Quinn, J. P. Schwarz, C. Dang, and S. G. Warren, 2016: Causes of variability in light absorption by particles in snow at sites in Idaho and Utah. J. Geophys. Res. Atmos., 121, 47514768, https://doi.org/10.1002/2015JD024375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. Zender, 2005: Snowpack radiative heating: Influence on the Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, https://doi.org/10.1029/2004GL022076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, https://doi.org/10.1029/2005JD006834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 24812497, https://doi.org/10.5194/acp-9-2481-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, G. W., I. H. Blifford, D. Gillette, and P. B. Russell, 1974: Complex index of refraction of airborne soil particles. J. Appl. Meteor., 13, 459471, https://doi.org/10.1175/1520-0450(1974)013<0459:CIOROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadley, O., C. Corrigan, T. Kirchstetter, S. Cliff, and V. Ramanathan, 2010: Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys., 10, 75057513, https://doi.org/10.5194/acp-10-7505-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspari, S., T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski, 2014: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khombu, Nepal and estimated radiative forcings. Atmos. Chem. Phys., 14, 80898103, https://doi.org/10.5194/acp-14-8089-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspari, S., S. M. Skiles, I. Delaney, D. Dixon, and T. H. Painter, 2015: Accelerated glacier melt on Snow Dome, Mt. Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire. J. Geophys. Res. Atmos., 120, 27932807, https://doi.org/10.1002/2014JD022676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landry, C., K. Buck, M. S. Raleigh, and M. P. Clark, 2014: Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res., 50, 17731788, https://doi.org/10.1002/2013WR013711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libois, Q., G. Picard, J. France, L. Arnaud, M. Dumont, C. Carmagnola, and M. King, 2013: Influence of grain shape on light penetration in snow. Cryosphere, 7, 1803, https://doi.org/10.5194/tc-7-1803-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matt, F. N., and J. F. Burkhart, 2018: Assessing satellite derived radiative forcing from snow impurities through inverse hydrologic modelling. Geophys. Res. Lett., 45, 35313541, https://doi.org/10.1002/2018GL077133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matt, F. N., J. F. Burkhart, and J.-P. Pietikäinen, 2018: Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale. Hydrol. Earth Syst. Sci., 22, 179201, https://doi.org/10.5194/hess-22-179-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munson, S. M., J. Belnap, and G. S. Okin, 2011: Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc. Natl. Acad. Sci. USA, 108, 38543859, https://doi.org/10.1073/pnas.1014947108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 700 pp., https://doi.org/10.17226/24938.

    • Crossref
    • Export Citation
  • Neff, J. C., and Coauthors, 2008: Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci., 1, 189195, https://doi.org/10.1038/ngeo133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., and J. Dozier, 2000: A hyperspectral method for remotely sensing the grain size of snow. Remote Sens. Environ., 74, 207216, https://doi.org/10.1016/S0034-4257(00)00111-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oaida, C. M., Y. Xue, M. G. Flanner, S. M. Skiles, F. De Sales, and T. H. Painter, 2015: Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western US. J. Geophys. Res. Atmos., 120, 32283248, https://doi.org/10.1002/2014JD022444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., N. P. Molotch, M. P. Cassidy, M. G. Flanner, and K. Steffen, 2007a: Contact spectroscopy for determination of stratigraphy of snow optical grain size. J. Glaciol., 53, 121127, https://doi.org/10.3189/172756507781833947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer, 2007b: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34, L12502, https://doi.org/10.1029/2007GL030284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall, 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA, 107, 17 12517 130, https://doi.org/10.1073/pnas.0913139107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., A. Bryant, and S. M. Skiles, 2012a: Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett., 39, L17502, https://doi.org/10.1029/2012GL052457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., S. M. Skiles, J. Deems, A. Bryant, and C. Landry, 2012b: Dust radiative forcing in snow of the Upper Colorado River Basin: Part 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, W07521, https://doi.org/10.1029/2012WR011985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., and Coauthors, 2016: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ., 184, 139152, https://doi.org/10.1016/j.rse.2016.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., S. M. Skiles, J. S. Deems, T. W. Brandt, and J. Dozier, 2018: Variation in rising limb of Colorado River snowmelt runoff hydrograph controlled by dust radiative forcing in snow. Geophys. Res. Lett., 45, 797808, https://doi.org/10.1002/2017GL075826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J., M. Bernhardt, and D. Marks, 2015: Water resources: Research network to track alpine water. Nature, 521, 32, https://doi.org/10.1038/521032c.

  • Qian, Y., and Coauthors, 2015: Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrologic impact. Adv. Atmos. Sci., 32, 6491,https://doi.org/10.1007/s00376-014-0010-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. R. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 21012114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., S. J. Doherty, F. Li, S. T. Ruggiero, C. E. Tanner, A. E. Perring, R. S. Gao, and D. W. Fahey, 2012: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmos. Meas. Tech., 5, 25812592, https://doi.org/10.5194/amt-5-2581-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., 2014: Dust and black carbon radiative forcing controls on snowmelt in the Colorado River basin. Ph.D. dissertation, University of California, Los Angeles, 251 pp., https://escholarship.org/uc/item/27s9r0j9.

  • Skiles, S. M., and T. H. Painter, 2016: A 9-yr record of dust on snow in the Colorado River Basin. Proceedings of the 12th Biennial Conference of Science and Management on the Colorado Plateau, USGS Scientific Investigations Rep. 2015–5180, 3–12, https://pubs.usgs.gov/sir/2015/5180/sir20155180.pdf.

  • Skiles, S. M., and T. H. Painter, 2017: Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol., 63, 118132, https://doi.org/10.1017/jog.2016.125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., T. H. Painter, J. Deems, C. Landry, and A. Bryant, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, W07522, https://doi.org/10.1029/2012WR011986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., T. H. Painter, J. Belnap, L. Holland, R. Reynolds, H. L. Goldstein, and J. C. Lin, 2015: Regional variability in dust on snow processes and impacts in the upper Colorado River Basin. Hydrol. Processes, 29, 53975413, https://doi.org/10.1002/hyp.10569.

    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., T. H. Painter, and G. S. Okin, 2017: A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow. J. Glaciol., 63, 133147, https://doi.org/10.1017/jog.2016.126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, https://doi.org/10.1364/AO.27.002502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterle, K. M., J. R. McConnell, J. Dozier, R. Edwards, and M. Flanner, 2013: Retention and radiative forcing of black carbon in the Eastern Sierra Nevada snow. Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, https://doi.org/10.1029/JD094iD13p16287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuzet, F., and Coauthors, 2017: A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow. Cryosphere, 11, 26332653, https://doi.org/10.5194/tc-11-2633-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys. Space Phys., 20, 6789, https://doi.org/10.1029/RG020i001p00067.

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to microwave: A revised compilation. J. Geophys. Res., 113, D14220, https://doi.org/10.1029/2007JD009744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendl, I. A., J. A. Menking, R. Färber, M. Gysel, S. Kaspari, M. J. G. Laborde, and M. Schwikowski, 2014: Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer. Atmos. Meas. Tech., 7, 26672681, https://doi.org/10.5194/amt-7-2667-2014.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2014: Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys., 14, 11 47511 491, https://doi.org/10.5194/acp-14-11475-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1231 626 88
PDF Downloads 697 179 14