An Intercomparison of GCM and RCM Dynamical Downscaling for Characterizing the Hydroclimatology of California and Nevada

Zexuan Xu Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Zexuan Xu in
Current site
Google Scholar
PubMed
Close
,
Alan M. Rhoades Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Alan M. Rhoades in
Current site
Google Scholar
PubMed
Close
,
Hans Johansen Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Hans Johansen in
Current site
Google Scholar
PubMed
Close
,
Paul A. Ullrich Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Search for other papers by Paul A. Ullrich in
Current site
Google Scholar
PubMed
Close
, and
William D. Collins Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, and Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California

Search for other papers by William D. Collins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dynamical downscaling is a widely used technique to properly capture regional surface heterogeneities that shape the local hydroclimatology. However, in the context of dynamical downscaling, the impacts on simulation fidelity have not been comprehensively evaluated across many user-specified factors, including the refinements of model horizontal resolution, large-scale forcing datasets, and dynamical cores. Two global-to-regional downscaling methods are used to assess these: specifically, the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research and Forecasting (WRF) Model with horizontal resolutions of 28, 14, and 7 km. The modeling strategies are assessed by comparing the VR-CESM and WRF simulations with consistent physical parameterizations and grid domains. Two groups of WRF Models are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM7 results (WRF_VRCESM) to evaluate the effects of large-scale forcing datasets. The simulated hydroclimatologies are compared with reference datasets for key properties including total precipitation, snow cover, snow water equivalent (SWE), and surface temperature. The large-scale forcing datasets are critical to the WRF simulations of total precipitation but not surface temperature, controlled by the wind field and atmospheric moisture transport at the ocean boundary. No significant benefit is found in the regional average simulated hydroclimatology by increasing horizontal resolution refinement from 28 to 7 km, probably due to the systematic biases from the diagnostic treatment of rainfall and snowfall in the microphysics scheme. The choice of dynamical core has little impact on total precipitation but significantly determines simulated surface temperature, which is affected by the snow-albedo feedback in winter and soil moisture estimations in summer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zexuan Xu, zexuanxu@lbl.gov

Abstract

Dynamical downscaling is a widely used technique to properly capture regional surface heterogeneities that shape the local hydroclimatology. However, in the context of dynamical downscaling, the impacts on simulation fidelity have not been comprehensively evaluated across many user-specified factors, including the refinements of model horizontal resolution, large-scale forcing datasets, and dynamical cores. Two global-to-regional downscaling methods are used to assess these: specifically, the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research and Forecasting (WRF) Model with horizontal resolutions of 28, 14, and 7 km. The modeling strategies are assessed by comparing the VR-CESM and WRF simulations with consistent physical parameterizations and grid domains. Two groups of WRF Models are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM7 results (WRF_VRCESM) to evaluate the effects of large-scale forcing datasets. The simulated hydroclimatologies are compared with reference datasets for key properties including total precipitation, snow cover, snow water equivalent (SWE), and surface temperature. The large-scale forcing datasets are critical to the WRF simulations of total precipitation but not surface temperature, controlled by the wind field and atmospheric moisture transport at the ocean boundary. No significant benefit is found in the regional average simulated hydroclimatology by increasing horizontal resolution refinement from 28 to 7 km, probably due to the systematic biases from the diagnostic treatment of rainfall and snowfall in the microphysics scheme. The choice of dynamical core has little impact on total precipitation but significantly determines simulated surface temperature, which is affected by the snow-albedo feedback in winter and soil moisture estimations in summer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zexuan Xu, zexuanxu@lbl.gov
Save
  • Boberg, F., and J. H. Christensen, 2012: Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat. Climate Change, 2, 433436, https://doi.org/10.1038/nclimate1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, https://doi.org/10.1073/pnas.0700144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, https://doi.org/10.1007/s10584-009-9583-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • California Data Exchange Center, 2016: California Department of Water Resources Northern Sierra 8 Station Index. California Data Exchange Center, http://cdec.water.ca.gov/cgi-progs/precip1/8STATIONHIST.

  • Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87, 2142, https://doi.org/10.1007/s10584-007-9377-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, H.-N. S., 2008: Dynamical downscaling of GCM simulations: Toward the improvement of forecast bias over California. Lawrence Livermore National Laboratory Tech. Rep. LLNLTR-407576, 16 pp., https://e-reports-ext.llnl.gov/pdf/365755.pdf.

    • Crossref
    • Export Citation
  • Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007: Evaluating the performance and utility of regional climate models: The prudence project. Climatic Change, 81, 16, https://doi.org/10.1007/s10584-006-9211-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, https://doi.org/10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currier, W. R., T. Thorson, and J. D. Lundquist, 2017: Independent evaluation of frozen precipitation from WRF and PRISM in the Olympic Mountains. J. Hydrometeor., 18, 26812703, https://doi.org/10.1175/JHM-D-17-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and M. L. Anderson, 2015: Storage in California’s reservoirs and snowpack in this time of drought. San Francisco Estuary Watershed Sci., 13, 15, https://doi.org/10.15447/sfews.2015v13iss2art1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., J. H. Christensen, M. Déqué, D. Jacob, R. G. Jones, and P. L. Vidale, 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108, 4124, https://doi.org/10.1029/2002JD002287.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. Callaghan, V. E. Larson, C. M. Zarzycki, J. Bacmeister, P. H. Lauritzen, P. A. Bogenschutz, and R. Neale, 2018: Regional climate simulations with the Community Earth System Model. J. Adv. Model. Earth Syst., 10, 12451265, https://doi.org/10.1002/2017MS001227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and W. J. Gutowski, 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467490, https://doi.org/10.1146/annurev-environ-102014-021217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58 (3), 175183, http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX_giorgi_WMO.pdf.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Jr., and Coauthors, 2016: WCRP Coordinated Regional Downscaling Experiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev., 9, 40874095, https://doi.org/10.5194/gmd-9-4087-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and T. O. Robbins, 2011: Climate variability and projected change in the western United States: Regional downscaling and drought statistics. Climate Dyn., 37, 835849, https://doi.org/10.1007/s00382-010-0838-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of the MODIS snow products. Hydrol. Processes, 21, 15341547, https://doi.org/10.1002/hyp.6715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., and G. A. Riggs, 2015: MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, version 6. National Snow and Ice Data Center Distributed Active Archive Center, accessed 2016, https://doi.org/10.5067/MODIS/MOD10CM.006.

    • Crossref
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. Clark, 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 5675, https://doi.org/10.1016/S0022-1694(03)00252-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, https://doi.org/10.1073/pnas.0404500101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikkilä, U., A. Sandvik, and A. Sorteberg, 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 15511564, https://doi.org/10.1007/s00382-010-0928-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinzeller, D., M. Duda, and H. Kunstmann, 2016: Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: An extreme scaling experiment. Geosci. Model Dev., 9, 77110, https://doi.org/10.5194/gmd-9-77-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., and P. A. Ullrich, 2016: Irrigation impacts on California’s climate with the variable-resolution CESM. J. Adv. Model. Earth Syst., 8, 11511163, https://doi.org/10.1002/2016MS000656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., and P. A. Ullrich, 2017: The changing character of twenty-first-century precipitation over the western United States in the variable-resolution CESM. J. Climate, 30, 75557575, https://doi.org/10.1175/JCLI-D-16-0673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., A. M. Rhoades, P. A. Ullrich, and C. M. Zarzycki, 2016: An evaluation of the variable resolution-CESM for modeling California’s climate. J. Adv. Model. Earth Syst., 8, 345369, https://doi.org/10.1002/2015MS000559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., and L. Wen, 2012: Evaluation of snowmelt simulation in the Weather Research and Forecasting Model. J. Geophys. Res., 117, D10110, https://doi.org/10.1029/2011JD016980.

    • Search Google Scholar
    • Export Citation
  • Kanamaru, H., and M. Kanamitsu, 2008: Model diagnosis of nighttime minimum temperature warming during summer due to irrigation in the California Central Valley. J. Hydrometeor., 9, 10611072, https://doi.org/10.1175/2008JHM967.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katragkou, E., and Coauthors, 2015: Regional climate hindcast simulations within Euro-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model Dev., 8, 603618, https://doi.org/10.5194/gmd-8-603-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenihan, J. M., R. Drapek, D. Bachelet, and R. P. Neilson, 2003: Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl., 13, 16671681, https://doi.org/10.1890/025295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K., Y. Gu, L. Leung, W. Lee, and R. Fovell, 2013: A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada. Atmos. Chem. Phys., 13, 11 70911 721, https://doi.org/10.5194/acp-13-11709-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, https://doi.org/10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., S. A. Foster, T. Keeling, K. G. Hubbard, C. Carlson, and R. Leeper, 2006: Impacts of irrigation on 20th century temperature in the northern Great Plains. Global Planet. Change, 54, 118, https://doi.org/10.1016/j.gloplacha.2005.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., G. Cortés, M. Girotto, and M. Durand, 2016a: A Landsat-era Sierra Nevada snow reanalysis (1985–2015). J. Hydrometeor., 17, 12031221, https://doi.org/10.1175/JHM-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., G. Cortés, M. Girotto, L. S. Huning, D. Li, and M. Durand, 2016b: Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery. Geophys. Res. Lett., 43, 63416349, https://doi.org/10.1002/2016GL068520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, https://doi.org/10.1029/2009EO360002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. J. Appl. Meteor. Climatol., 47, 18341844, https://doi.org/10.1175/2007JAMC1480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed September 2017, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Pavelsky, T. M., S. Kapnick, and A. Hall, 2011: Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. J. Geophys. Res., 116, D16115, https://doi.org/10.1029/2010JD015479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., S. Sobolowski, S. B. Kapnick, and J. B. Barnes, 2012: Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys. Res. Lett., 39, D16115, https://doi.org/10.1029/2012GL052741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013a: The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J. Climate, 26, 58795896, https://doi.org/10.1175/JCLI-D-12-00766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013b: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, https://doi.org/10.1007/s00382-012-1337-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., W. I. Gustafson, L. R. Leung, and S. J. Ghan, 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114, D03108, https://doi.org/10.1029/2008JD011039.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., S. J. Ghan, and L. R. Leung, 2010: Downscaling hydroclimatic changes over the western US based on CAM subgrid scheme and WRF regional climate simulations. Int. J. Climatol., 30, 675693, https://doi.org/10.1002/joc.1928.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., K. Rittger, C. E. Moore, B. Henn, J. A. Lutz, and J. D. Lundquist, 2013: Ground-based testing of MODIS fractional snow cover in subalpine meadows and forests of the Sierra Nevada. Remote Sens. Environ., 128, 4457, https://doi.org/10.1016/j.rse.2012.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhoades, A. M., X. Huang, P. A. Ullrich, and C. M. Zarzycki, 2016: Characterizing Sierra Nevada snowpack using variable-resolution CESM. J. Appl. Meteor. Climatol., 55, 173196, https://doi.org/10.1175/JAMC-D-15-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhoades, A. M., P. A. Ullrich, and C. M. Zarzycki, 2018a: Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Climate Dyn., 50, 261288, https://doi.org/10.1007/s00382-017-3606-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhoades, A. M., P. A. Ullrich, C. M. Zarzycki, H. Johansen, S. A. Margulis, H. Morrison, Z. Xu, and W. Collins, 2018b: Sensitivity of mountain hydroclimate simulations in variable-resolution CESM to microphysics and horizontal resolution. J. Adv. Model. Earth Syst., 10, 13571380, https://doi.org/10.1029/2018MS001326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Sorooshian, S., J. Li, K.-l. Hsu, and X. Gao, 2011: How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. J. Geophys. Res., 116, D06102, https://doi.org/10.1029/2010JD014775.

    • Search Google Scholar
    • Export Citation
  • Subin, Z., W. Riley, J. Jin, D. Christianson, M. Torn, and L. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3–CLM3.5). Earth Interact., 15, https://doi.org/10.1175/2010EI331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., A. Hall, M. Schwartz, D. B. Walton, and N. Berg, 2016: Twenty-first-century snowfall and snowpack changes over the Southern California mountains. J. Climate, 29, 91110, https://doi.org/10.1175/JCLI-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P., 2014: SQuadGen: Spherical Quadrilateral Grid Generator. UC Davis, http://climate.ucdavis.edu/squadgen.php.

  • Urrutia, R., and M. Vuille, 2009: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res., 114, D02108, https://doi.org/10.1029/2008JD011021.

    • Search Google Scholar
    • Export Citation
  • Van der Linden, P., and J. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. ENSEMBLES Rep., Met Office Hadley Centre, 160 pp., http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf.

  • Wang, M., and P. Ullrich, 2018: Marine air penetration in California’s Central Valley: Meteorological drivers and the impact of climate change. J. Appl. Meteor. Climatol., 57, 137154, https://doi.org/10.1175/JAMC-D-17-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., P. Ullrich, and D. Millstein, 2018a: Datasets on hub-height wind speed comparisons for wind farms in California. Data Brief, 19, 214221, https://doi.org/10.1016/j.dib.2018.05.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., P. Ullrich, and D. Millstein, 2018b: The future of wind energy in California: Future projections with the variable-resolution CESM. Renewable Energy, 127, 242257, https://doi.org/10.1016/j.renene.2018.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, R., K. Clarke, M. Goodchild, J. Reichman, and J. Dozier, 2002: Preparing for a changing climate: The potential consequences of climate variability and change for California. California Regional Assessment Group Rep., 431 pp., http://www.ncgia.ucsb.edu/pubs/CA_Report.pdf.

  • Wise, E. K., 2012: Hydroclimatology of the US Intermountain West. Prog. Phys. Geogr., 36, 458479, https://doi.org/10.1177/0309133312446538.

  • Wu, C., X. Liu, Z. Lin, A. M. Rhoades, P. A. Ullrich, C. M. Zarzycki, Z. Lu, and S. R. Rahimi-Esfarjani, 2017: Exploring a variable-resolution approach for simulating regional climate in the Rocky Mountain region using the VR-CESM. J. Geophys. Res. Atmos., 122, 10 93910 965, https://doi.org/10.1002/2017JD027008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, https://doi.org/10.1175/MWR-D-13-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 54815503, https://doi.org/10.1175/JCLI-D-14-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 27772803, https://doi.org/10.1175/JCLI-D-14-00599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Role of convective scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426, https://doi.org/10.1029/94JD02519.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 711 179 6
PDF Downloads 689 78 4