Local Enhancement of Extreme Precipitation during Atmospheric Rivers as Simulated in a Regional Climate Model

Raquel Lorente-Plazas School of STEM, University of Washington Bothell, Bothell, Washington, and Department of Physics, Universidad de Murcia, Murcia, Spain

Search for other papers by Raquel Lorente-Plazas in
Current site
Google Scholar
PubMed
Close
,
Todd P. Mitchell Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Todd P. Mitchell in
Current site
Google Scholar
PubMed
Close
,
Guillaume Mauger Climate Impacts Group, University of Washington, Seattle, Washington

Search for other papers by Guillaume Mauger in
Current site
Google Scholar
PubMed
Close
, and
Eric P. Salathé Jr. School of STEM, University of Washington Bothell, Bothell, Washington

Search for other papers by Eric P. Salathé Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the synoptic conditions that yield extreme precipitation in two regions with different orographic features, the Olympic Mountains and Puget Sound. To capture orographic extreme precipitation, a dynamical downscaling is performed, driven by the NCEP–NCAR reanalysis and evaluated for cool-season months from 1970 to 2010. Clustering techniques are applied to the regional climate simulation, which reveals the Olympic Mountains and Puget Sound as regions with distinct temporal variability in precipitation. Results show that approximately one-third of the extreme precipitation events in each region occur without a similarly extreme event in the other, in spite of the fact that the two areas are very closely located and one is downstream of the other. Composites of synoptic conditions for extreme precipitation events show differences in integrated vapor transport (IVT) due to its dynamical component (winds at 850 hPa) and its thermodynamical component [integrated water vapor (IWV)]. For Puget Sound events, IVT is lower compared to Olympic Mountain events because of lower wind speeds. Olympic Mountain events have lower IVT compared to events with extreme precipitation in both regions, but in this case, the difference is due to lower IWV and more southerly winds. These differences in the large-scale conditions promote differences in the mesoscale mechanisms that enhance precipitation in each location. For Puget Sound events, static stability is higher, and there is a weak rain shadow. For Olympic Mountain events, static stability is lower, and a strong rain shadow is present. During extreme events in both regions, orographic modulation is minimized and large-scale effects dominate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raquel Lorente-Plazas, lorente.plazas@gmail.com

Abstract

This paper examines the synoptic conditions that yield extreme precipitation in two regions with different orographic features, the Olympic Mountains and Puget Sound. To capture orographic extreme precipitation, a dynamical downscaling is performed, driven by the NCEP–NCAR reanalysis and evaluated for cool-season months from 1970 to 2010. Clustering techniques are applied to the regional climate simulation, which reveals the Olympic Mountains and Puget Sound as regions with distinct temporal variability in precipitation. Results show that approximately one-third of the extreme precipitation events in each region occur without a similarly extreme event in the other, in spite of the fact that the two areas are very closely located and one is downstream of the other. Composites of synoptic conditions for extreme precipitation events show differences in integrated vapor transport (IVT) due to its dynamical component (winds at 850 hPa) and its thermodynamical component [integrated water vapor (IWV)]. For Puget Sound events, IVT is lower compared to Olympic Mountain events because of lower wind speeds. Olympic Mountain events have lower IVT compared to events with extreme precipitation in both regions, but in this case, the difference is due to lower IWV and more southerly winds. These differences in the large-scale conditions promote differences in the mesoscale mechanisms that enhance precipitation in each location. For Puget Sound events, static stability is higher, and there is a weak rain shadow. For Olympic Mountain events, static stability is lower, and a strong rain shadow is present. During extreme events in both regions, orographic modulation is minimized and large-scale effects dominate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raquel Lorente-Plazas, lorente.plazas@gmail.com
Save
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, https://doi.org/10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattell, R., 1966: The scree test for the number of factors. Multivar. Behav. Res., 1, 245276, https://doi.org/10.1207/s15327906mbr0102_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569586, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luca, A., R. de Elía, and R. Laprise, 2012: Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Climate Dyn., 38, 12291247, https://doi.org/10.1007/s00382-011-1068-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dulière, V., Y. Zhang, and E. P. Salathé Jr., 2011: Extreme precipitation and temperature over the U.S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models. J. Climate, 24, 19501964, https://doi.org/10.1175/2010JCLI3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eiras-Barca, J., S. Brands, and G. Miguez-Macho, 2016: Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic margin. J. Geophys. Res. Atmos., 121, 931948, https://doi.org/10.1002/2015JD023379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eiras-Barca, J., F. Dominguez, H. Hu, D. Garaboa-Paz, and G. Miguez-Macho, 2017: Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool. Earth Syst. Dyn., 8, 12471261, https://doi.org/10.5194/esd-8-1247-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, https://doi.org/10.1175/2011BAMS3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vázquez, and D. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, 2, https://doi.org/10.3389/feart.2014.00002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P., E. García-Bustamante, J. González-Rouco, F. Valero, J. Montávez, and J. Navarro, 2008: Surface wind regionalization in complex terrain. J. Appl. Meteor. Climatol., 47, 308325, https://doi.org/10.1175/2007JAMC1483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017: Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 56055619, https://doi.org/10.1175/JCLI-D-16-0875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, P., and R. Weber, 1996: Classification of mesoscale wind fields in the MISTRAL field experiment. J. Appl. Meteor., 35, 19631979, https://doi.org/10.1175/1520-0450(1996)035<1963:COMWFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, https://doi.org/10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., J. Montávez, P. Jimenez, S. Jerez, J. Gómez-Navarro, J. García-Valero, and P. Jimenez-Guerrero, 2015: Characterization of surface winds over the Iberian Peninsula. Int. J. Climatol., 35, 10071026, https://doi.org/10.1002/joc.4034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., 1981: Topographically forced convergence in western Washington State. Mon. Wea. Rev., 109, 13351347, https://doi.org/10.1175/1520-0493(1981)109<1335:TFCIWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., N. Johnson, M. Warner, and R. Vargas, 2015: Synoptic control of cross-barrier precipitation ratios for the Cascade Mountains. J. Hydrometeor., 16, 10141028, https://doi.org/10.1175/JHM-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, and C. Liu, 2018: The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J. Climate, 31, 20932113, https://doi.org/10.1175/JCLI-D-17-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10 38710 395, https://doi.org/10.1002/2017GL074882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, D07113, https://doi.org/10.1029/2007JD009453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. J. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, https://doi.org/10.1175/2010JHM1232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. M. Trigo, M. L. R. Liberato, and R. Tomé, 2015: Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor., 16, 579597, https://doi.org/10.1175/JHM-D-14-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Siler, N., and D. Durran, 2016: What causes weak orographic rain shadows? Insights from case studies in the Cascades and idealized simulations. J. Atmos. Sci., 73, 40774099, https://doi.org/10.1175/JAS-D-15-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., G. Roe, and D. Durran, 2013: On the dynamical causes of variability in the rain-shadow effect: A case study of the Washington Cascades. J. Hydrometeor., 14, 122139, https://doi.org/10.1175/JHM-D-12-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, https://doi.org/10.1175/MWR-D-12-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, https://doi.org/10.1029/2007JD009006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H., S. Saha, and Å. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viale, M., and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, https://doi.org/10.1175/2010JHM1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 499 pp.

    • Crossref
    • Export Citation
  • Ward, J. H., Jr., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, https://doi.org/10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2015: Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013a: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 21662176, https://doi.org/10.1109/TGRS.2012.2211024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013b: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, https://doi.org/10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Elsevier, 467 pp.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 674 123 14
PDF Downloads 410 96 8