Evaluating TMPA Rainfall over the Sparsely Gauged East African Rift

Elise Monsieurs Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Department of Geography, University of Liège, Liège, Belgium
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Elise Monsieurs in
Current site
Google Scholar
PubMed
Close
,
Dalia Bach Kirschbaum Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dalia Bach Kirschbaum in
Current site
Google Scholar
PubMed
Close
,
Jackson Tan Universities Space Research Association, Columbia, Maryland
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jackson Tan in
Current site
Google Scholar
PubMed
Close
,
Jean-Claude Maki Mateso Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo

Search for other papers by Jean-Claude Maki Mateso in
Current site
Google Scholar
PubMed
Close
,
Liesbet Jacobs Department of Geography and Tourism, KU Leuven, Leuven, Belgium

Search for other papers by Liesbet Jacobs in
Current site
Google Scholar
PubMed
Close
,
Pierre-Denis Plisnier G. L. Eco, Grez-Doiceau, Belgium

Search for other papers by Pierre-Denis Plisnier in
Current site
Google Scholar
PubMed
Close
,
Wim Thiery Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Wim Thiery in
Current site
Google Scholar
PubMed
Close
,
Augusta Umutoni Ministry of Infrastructure, Kigali, Rwanda

Search for other papers by Augusta Umutoni in
Current site
Google Scholar
PubMed
Close
,
Didace Musoni Rwanda Meteorology Agency, Kigali, Rwanda

Search for other papers by Didace Musoni in
Current site
Google Scholar
PubMed
Close
,
Toussaint Mugaruka Bibentyo Department of Geology, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo

Search for other papers by Toussaint Mugaruka Bibentyo in
Current site
Google Scholar
PubMed
Close
,
Gloire Bamulezi Ganza Department of Geology, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo

Search for other papers by Gloire Bamulezi Ganza in
Current site
Google Scholar
PubMed
Close
,
Guy Ilombe Mawe Department of Geology, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo

Search for other papers by Guy Ilombe Mawe in
Current site
Google Scholar
PubMed
Close
,
Luc Bagalwa Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo

Search for other papers by Luc Bagalwa in
Current site
Google Scholar
PubMed
Close
,
Clairia Kankurize Faculté des Sciences de l'Environnement, Université Polytechnique de Gitega, Gitega, Burundi

Search for other papers by Clairia Kankurize in
Current site
Google Scholar
PubMed
Close
,
Caroline Michellier Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium

Search for other papers by Caroline Michellier in
Current site
Google Scholar
PubMed
Close
,
Thomas Stanley Universities Space Research Association, Columbia, Maryland
NASA Goddard Earth Sciences Technology and Research, Columbia, Maryland
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Thomas Stanley in
Current site
Google Scholar
PubMed
Close
,
Francois Kervyn Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium

Search for other papers by Francois Kervyn in
Current site
Google Scholar
PubMed
Close
,
Matthieu Kervyn Department of Geography, Earth System Science, Vrije Universiteit Brussel, Brussels, Belgium

Search for other papers by Matthieu Kervyn in
Current site
Google Scholar
PubMed
Close
,
Alain Demoulin Department of Geography, University of Liège, Liège, Belgium

Search for other papers by Alain Demoulin in
Current site
Google Scholar
PubMed
Close
, and
Olivier Dewitte Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium

Search for other papers by Olivier Dewitte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate precipitation data are fundamental for understanding and mitigating the disastrous effects of many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially deadly events that can be mitigated with advanced warning, but accurate forecasts require timely estimation of precipitation, which is problematic in regions such as tropical Africa with limited gauge measurements. Satellite rainfall estimates (SREs) are of great value in such areas, but rigorous validation is required to identify the uncertainties linked to SREs for hazard applications. This paper presents results of an unprecedented record of gauge data in the western branch of the East African Rift, with temporal resolutions ranging from 30 min to 24 h and records from 1998 to 2018. These data were used to validate the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research version and near-real-time products for 3-hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate that there are at least two factors that led to the underestimation of TMPA at the regional level: complex topography and high rainfall intensities. The TMPA near-real-time product shows overall stronger rainfall underestimations but lower absolute errors and a better performance at higher rainfall intensities compared to the research version. We found area-averaged TMPA rainfall estimates relatively more suitable in order to move toward regional hazard assessment, compared to data from scarcely distributed gauges with limited representativeness in the context of high rainfall variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0103.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elise Monsieurs, elise.monsieurs@africamuseum.be

Abstract

Accurate precipitation data are fundamental for understanding and mitigating the disastrous effects of many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially deadly events that can be mitigated with advanced warning, but accurate forecasts require timely estimation of precipitation, which is problematic in regions such as tropical Africa with limited gauge measurements. Satellite rainfall estimates (SREs) are of great value in such areas, but rigorous validation is required to identify the uncertainties linked to SREs for hazard applications. This paper presents results of an unprecedented record of gauge data in the western branch of the East African Rift, with temporal resolutions ranging from 30 min to 24 h and records from 1998 to 2018. These data were used to validate the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research version and near-real-time products for 3-hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate that there are at least two factors that led to the underestimation of TMPA at the regional level: complex topography and high rainfall intensities. The TMPA near-real-time product shows overall stronger rainfall underestimations but lower absolute errors and a better performance at higher rainfall intensities compared to the research version. We found area-averaged TMPA rainfall estimates relatively more suitable in order to move toward regional hazard assessment, compared to data from scarcely distributed gauges with limited representativeness in the context of high rainfall variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-18-0103.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elise Monsieurs, elise.monsieurs@africamuseum.be

Supplementary Materials

    • Supplemental Materials (PDF 287.02 KB)
Save
  • Abdelkareem, M., 2017: Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards, 85, 1937, https://doi.org/10.1007/s11069-016-2556-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adeyewa, Z. D., and K. Nakamura, 2003: Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteor., 42, 331347, https://doi.org/10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, L., B. Bisselink, F. Dottori, G. Naumann, A. De Roo, P. Salomon, K. Wyser, and L. Feyen, 2017: Global projections of river flood risk in a warmer world. Earth’s Future, 5, 171182, https://doi.org/10.1002/2016EF000485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avalon Cullen, C., R. Al-Suhili, and R. Khanbilvardi, 2016: Guidance index for shallow landslide hazard analysis. Remote Sens., 8, 866, https://doi.org/10.3390/rs8100866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, L. R., D. M. Schultz, E. C. Gruntfest, M. H. Hayden, and C. C. Benight, 2009: Corrigendum: False alarm rate or false alarm ratio. Wea. Forecasting, 24, 14521454, https://doi.org/10.1175/2009WAF2222300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and M. Gebremichael, 2011: Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci., 15, 11471155, https://doi.org/10.5194/hess-15-1147-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunetti, M. T., M. Melillo, S. Peruccacci, L. Ciabatta, and L. Brocca, 2018: How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens. Environ., 210, 6575, https://doi.org/10.1016/j.rse.2018.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattani, E., A. Merino, and V. Levizzani, 2016: Evaluation of monthly satellite-derived precipitation products over East Africa. J. Hydrometeor., 17, 25552573, https://doi.org/10.1175/JHM-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, https://doi.org/10.1175/2007JCLI1494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delvaux, D., J. Mulumba, M. Ntabwoba, S. Sebagenzi, S. Fiama, F. Kervyn, and H. Havenith, 2017: Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system). J. Afr. Earth Sci., 134, 831855, https://doi.org/10.1016/j.jafrearsci.2016.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., and K. K. Yilmaz, 2014: Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeor., 15, 14981516, https://doi.org/10.1175/JHM-D-13-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devrani, R., V. Singh, S. M. Mudd, and H. D. Sinclair, 2015: Prediction of flash flood hazard impact from Himalayan river profiles. Geophys. Res. Lett., 42, 58885894, https://doi.org/10.1002/2015GL063784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., 2017: Climate of western and central equatorial Africa. Climate science, Oxford Research Encyclopedias, https://doi.org/10.1093/acrefore/9780190228620.013.511.

    • Crossref
    • Export Citation
  • Dezfuli, A. K., C. M. Ichoku, G. J. Huffman, K. I. Mohr, J. S. Selker, N. van de Giesen, R. Hochreutener, and F. O. Annor, 2017: Validation of IMERG precipitation in Africa. J. Hydrometeor., 18, 28172825, https://doi.org/10.1175/JHM-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., S. Chidzambwa, P. Ceccato, S. J. Connor, and C. F. Ropelewski, 2008: Validation of high‐resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110, https://doi.org/10.1080/01431160701772526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., S. J. Connor, and P. Ceccato, 2010: Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and H. Faisal, Eds., Springer, 193–204, https://doi.org/10.1007/978-90-481-2915-7_11.

    • Crossref
    • Export Citation
  • Docquier, D., W. Thiery, S. Lhermitte, and N. P. M. van Lipzig, 2016: Multi-year wind dynamics around Lake Tanganyika. Climate Dyn., 47, 31913202, https://doi.org/10.1007/s00382-016-3020-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2007: Methods for verifying satellite precipitation estimates. Measuring Precipitation from Space, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 345–356, https://doi.org/10.1007/978-1-4020-5835-6_27.

    • Crossref
    • Export Citation
  • El Kenawy, A. M., J. I. Lopez-Moreno, M. F. McCabe, and S. M. Vicente-Serrano, 2015: Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia. Global Planet. Change, 133, 188200, https://doi.org/10.1016/j.gloplacha.2015.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations — A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, https://doi.org/10.5194/hess-17-837-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gariano, S. L., and F. Guzzetti, 2016: Landslides in a changing climate. Earth-Sci. Rev., 162, 227252, https://doi.org/10.1016/j.earscirev.2016.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., F. Chalié, A. Vincens, M. A. Williams, and D. Williamson, 2008: Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev., 27, 23162340, https://doi.org/10.1016/j.quascirev.2008.08.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., P. E. Kirstetter, Y. E. Hong, N. J. Carr, J. J. Gourley, W. Petersen, and Y. Zheng, 2017: Understanding overland multisensor satellite precipitation error in TMPA-RT products. J. Hydrometeor., 18, 285306, https://doi.org/10.1175/JHM-D-15-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimaldi, S., A. Petroselli, L. Baldini, and E. Gorgucci, 2018: Description and preliminary results of a 100 square meter rain gauge. J. Hydrol., 556, 827834, https://doi.org/10.1016/j.jhydrol.2015.09.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., A. Henschke, and R. F. Adler, 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373388, https://doi.org/10.1016/j.atmosres.2009.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidke, P., 1926: Berechnung des Erfolges und der Giite der Windstarkevorhersagen im Sturmwarnungsdienst. Geogr. Ann., 8, 310349.

  • Hobouchian, M. P., P. Salio, Y. García, D. Vila, and R. Garreaud, 2017: Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos. Res., 190, 4354, https://doi.org/10.1016/j.atmosres.2017.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2014: TRMM and other data precipitation data set documentation. NASA TRMM Doc., 42 pp., ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.

  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer, 3–22.

    • Crossref
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

  • Huffman, G. J., A. Pendergrass, and NCAR Research Staff, Eds., 2017: The Climate Data Guide: TRMM: Tropical Rainfall Measuring Mission. UCAR, accessed 6 January 2017, https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Islam, N., S. Das, and H. Uyeda, 2010: Calibration of TRMM derived rainfall over Nepal during 1998-2007. Open Atmos. Sci. J., 4, 1223, https://doi.org/10.2174/1874282301004010012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Islam, T., M. A. Rico-Ramirez, D. Han, P. K. Srivastava, and A. M. Ishak, 2012: Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J. Atmos. Solar-Terr. Phys., 77, 194208, https://doi.org/10.1016/j.jastp.2012.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, L., O. Dewitte, J. Poesen, D. Delvaux, W. Thiery, and M. Kervyn, 2016a: The Rwenzori Mountains, a landslide-prone region? Landslides, 13, 519536, https://doi.org/10.1007/s10346-015-0582-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, L., and Coauthors, 2016b: Reconstruction of a flash flood event through a multi-hazard approach: Focus on the Rwenzori Mountains, Uganda. Nat. Hazards, 84, 851876, https://doi.org/10.1007/s11069-016-2458-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, L., and Coauthors, 2017: Landslide diversity in the Rwenzori Mountains (Uganda). WLF 2017: Advancing Culture of Living with Landslides, M. Mikos et al., Eds., Springer, 79–86, https://doi.org/10.1007/978-3-319-53498-5_10.

    • Crossref
    • Export Citation
  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21, 10411066, https://doi.org/10.1002/joc.635.

  • Kidd, C., and G. J. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kim, K., J. Park, J. Baik, and M. Choi, 2017: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95105, https://doi.org/10.1016/j.atmosres.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., and T. Stanley, 2018: Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Earth’s Future, 6, 505523, https://doi.org/10.1002/2017EF000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., T. Stanley, and J. Simmons, 2015: A dynamic landslide hazard assessment system for Central America and Hispaniola. Nat. Hazards Earth Syst. Sci., 15, 22572272, https://doi.org/10.5194/nhess-15-2257-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjekstad, O., and L. Highland, 2009: Economic and social impacts of landslides. Landslides – Disaster Risk Reduction, K. Sassa and P. Canuti, Eds., Springer, 573–587, https://doi.org/10.1007/978-3-540-69970-5_30.

    • Crossref
    • Export Citation
  • Kumar, A., A. K. L. Asthana, R. Singh, R. Jayangondaperumal, A. K. Gupta, and S. S. Bhakuni, 2017: Geomorphology assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology, 284, 7287, https://doi.org/10.1016/j.geomorph.2017.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N. Y. Wang, R. Ferraro, S. J. Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2009: Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat. Hazards, 50, 109123, https://doi.org/10.1007/s11069-008-9324-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki Mateso, J., and O. Dewitte, 2014: Towards an inventory of landslide processes and the elements at risk on the Rift flanks West of Lake Kivu (DRC). Geo-Eco-Trop, 38, 137154.

    • Search Google Scholar
    • Export Citation
  • Mantas, V. M., Z. Liu, C. Caro, and A. J. S. C. Pereira, 2015: Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmos. Res., 163, 132145, https://doi.org/10.1016/j.atmosres.2014.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martelloni, G., S. Segoni, R. Fanti, and F. Catani, 2012: Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides, 9, 485495, https://doi.org/10.1007/s10346-011-0308-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashingia, F., F. Mtalo, and M. Bruen, 2014: Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania. Phys. Chem. Earth, 67–69, 5563, https://doi.org/10.1016/j.pce.2013.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, G. B., S. Matula, F. Doležal, and J. Fišák, 2015: Adjustment to rainfall measurement undercatch with a tipping-bucket rain gauge using ground-level manual gauges. Meteor. Atmos. Phys., 127, 241256, https://doi.org/10.1007/s00703-014-0355-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michellier, C., P. Pigeon, and F. Kervyn, 2016: Contextualizing vulnerability assessment: A support to geo-risk management in central Africa. Nat. Hazards, 82, 2742, https://doi.org/10.1007/s11069-016-2295-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monsieurs, E., and Coauthors, 2017: Constraints on landslide-climate research imposed by the reality of fieldwork in Central Africa. Third North American Symp. on Landslides, Roanoke, VA, Association of Environmental and Engineering Geologists, 158–168.

  • Monsieurs, E., and Coauthors, 2018: Landslide inventory for hazard assessment in a data-poor context: A regional-scale approach in a tropical African environment. Landslides, https://doi.org/10.1007/s10346-018-1008-y, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munzimi, Y. A., M. C. Hansen, B. Adusei, and G. B. Senay, 2015: Characterizing Congo basin rainfall and climate using Tropical Rainfall Measuring Mission (TRMM) satellite data and limited rain gauge ground observations. J. Appl. Meteor. Climatol., 54, 541555, https://doi.org/10.1175/JAMC-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelkin, E., 2017: Equator-crossing times (local). Microwave satellite overpass time history. Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, accessed 20 June 2017, https://precip.gsfc.nasa.gov/times_allsat.jpg.

  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology, and Paleoclimatology of East African Lakes, I. Johnson and E. O. Odada, Eds., Gordon and Breach Publishers, 25–56.

    • Crossref
    • Export Citation
  • Nobile, A., A. Dille, E. Monsieurs, J. Basimike, T. Mugaruka Bibentyo, N. d’Oreye, F. Kervyn, and O. Dewitte, 2018: Multi-temporal DInSAR to characterise landslide ground deformations in a tropical urban environment: Focus on Bukavu (DR Congo). Remote Sens., 10, 626, https://doi.org/10.3390/rs10040626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poméon, T., D. Jackisch, and B. Diekkrüger, 2017: Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol., 547, 222235, https://doi.org/10.1016/j.jhydrol.2017.01.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, D. S. Pai, and A. Aghakouchak, 2016a: From TRMM to GPM: How well can heavy rainfall be detected from space?Adv. Water Resour., 88, 17, https://doi.org/10.1016/j.advwatres.2015.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, E. N. Rajagopal, and D. S. Pai, 2016b: Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Climatol., 36, 16141631, https://doi.org/10.1002/joc.4446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, M., S. Luciani, D. Valigi, D. Kirschbaum, M. T. Brunetti, S. Peruccacci, and F. Guzzetti, 2017: Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology, 285, 1627, https://doi.org/10.1016/j.geomorph.2017.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Paula, Y. García, and D. Vila, 2015: Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos. Res., 163, 146161, https://doi.org/10.1016/j.atmosres.2014.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satgé, F., and Coauthors, 2016: Assessment of satellite rainfall products over the Andean plateau. Atmos. Res., 167, 114, https://doi.org/10.1016/j.atmosres.2015.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheel, M. L. M., M. Rohrer, C. Huggel, D. Santos Villar, E. Silvestre, and G. J. Huffman, 2011: Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci., 15, 26492663, https://doi.org/10.5194/hess-15-2649-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segoni, S., L. Piciullo, and S. L. Gariano, 2018: A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15, 14831501, https://doi.org/10.1007/s10346-018-0966-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrat-Capdevila, A., M. Merino, J. B. Valdes, and M. Durcik, 2016: Evaluation of the performance of three satellite precipitation products over Africa. Remote Sens., 8, 836, https://doi.org/10.3390/rs8100836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., M. Ondrás, and B. Chvíla, 2009: The WMO precipitation measurement intercomparisons. Atmos. Res., 92, 376380, https://doi.org/10.1016/j.atmosres.2009.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaaban, A. A., and P. E. Roundy, 2017: OLR perspective on the Indian Ocean dipole with application to East African precipitation. Quart. J. Roy. Meteor. Soc., 143, 18281843, https://doi.org/10.1002/qj.3045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., A. Xiong, Y. Wang, and P. Xie, 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, https://doi.org/10.1029/2010JD014481.

    • Search Google Scholar
    • Export Citation
  • Sidle, R. C., and T. A. Bogaard, 2016: Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci. Rev., 159, 275291, https://doi.org/10.1016/j.earscirev.2016.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smets, B., D. Delvaux, K. Ann, S. Poppe, M. Kervyn, and F. Kervyn, 2016: The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift. Tectonophysics, 683, 6276, https://doi.org/10.1016/j.tecto.2016.06.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souverijns, N., W. Thiery, M. Demuzere, and N. P. M. van Lizpig, 2016: Drivers of future changes in East African precipitation. Environ. Res. Lett., 11, 114011, https://doi.org/10.1088/1748-9326/11/11/114011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, T., and D. B. Kirschbaum, 2017: A heuristic approach to global landslide susceptibility mapping. Nat. Hazards, 87, 145164, https://doi.org/10.1007/s11069-017-2757-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., Y. Hong, and D. P. Lettenmaier, 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeor., 9, 622640, https://doi.org/10.1175/2007JHM944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and A. P. Barros, 2010: An evaluation of the statistics of rainfall extremes in rain gauge observations, and satellite-based and reanalysis products using universal multifractals. J. Hydrometeor., 11, 388404, https://doi.org/10.1175/2009JHM1142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, P. E. Kirstetter, and Y. Tian, 2017: Performance of IMERG as a function of spatiotemporal scale. J. Hydrometeor., 18, 307319, https://doi.org/10.1175/JHM-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., A. Behrangi, D. Long, C. Li, and Y. Hong, 2018: Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol., 559, 294306, https://doi.org/10.1016/j.jhydrol.2018.02.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiemig, V., R. Rojas, M. Zambrano-Bigiarini, V. Levizzani, and A. De Roo, 2012: Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeor., 13, 17601783, https://doi.org/10.1175/JHM-D-12-032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiery, W., E. L. Davin, H. J. Panitz, M. Demuzere, S. Lhermitte, and N. Van Lipzig, 2015: The impact of the African Great Lakes on the regional climate. J. Climate, 28, 40614085, https://doi.org/10.1175/JCLI-D-14-00565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiery, W., E. L. Davin, S. I. Seneviratne, K. Bedka, S. Lhermitte, and N. P. M. van Lizpig, 2016: Hazardous thunderstorm intensification over Lake Victoria. Nat. Commun., 7, 12786, https://doi.org/10.1038/ncomms12786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiery, W., L. Gudmundsson, K. Bedka, F. H. M. Semazzi, P. Willems, N. P. M. van Lipzig, and S. I. Seneviratne, 2017: Early warnings of hazardous thunderstorms over Lake Victoria. Environ. Res. Lett., 12, 074012, https://doi.org/10.1088/1748-9326/aa7521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, https://doi.org/10.1029/2007GL030787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandecasteele, I., J. Moeyersons, and P. Trefois, 2010: An assessment of the spatial and temporal distribution of natural hazards in Central Africa. African Palaeoenvironments and Geomorphic Landscape Evolution, J. Runge, Ed., Palaeoecology of Africa, Vol. 30, CRC Press, 279–300.

  • Vila, D. A., L. G. G. de Goncalves, D. L. Toll, and J. R. Rozante, 2009: Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeor., 10, 533543, https://doi.org/10.1175/2008JHM1048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2007: Evaluation of the research-version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett., 34, L05402, https://doi.org/10.1029/2006GL029147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., and Coauthors, 2006: African climate change: Taking the shorter route. Bull. Amer. Meteor. Soc., 87, 13551366, https://doi.org/10.1175/BAMS-87-10-1355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Forecast verification. Statistical Methods in the Atmospheric Sciences, Academic Press, 260–268.

  • Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaduvanshi, A., P. K. Srivastava, and A. C. Pandey, 2015: Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India. Phys. Chem. Earth, 83–84, 1427, https://doi.org/10.1016/j.pce.2015.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, F., L. Zhang, K. Wah, W. Win, L. Ren, and C. Zhao, 2017: Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sens., 9, 302, https://doi.org/10.3390/rs9030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambrano-Bigiarini, M., A. Nauditt, C. Birkel, K. Verbist, and L. Ribbe, 2017: Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci., 21, 12951320, https://doi.org/10.5194/hess-21-1295-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 769 188 18
PDF Downloads 585 103 13