• Abdella, K., and N. A. MacFarlane, 1996: Parameterization of the surface-layer exchange coefficients for atmospheric models. Bound.-Layer Meteor.,80, 223–248.

    • Crossref
    • Export Citation
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, U.S. Dept. of Commerce, Washington, DC, 150 pp.

  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor.,30, 327–341.

    • Crossref
    • Export Citation
  • Betts, A. K., F. Chen, K. E. Mitchell, and Z. I. Janji, 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data. Mon. Wea. Rev.,125, 2896–2916.

    • Crossref
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN−417 + STR, 150 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.].

  • Braden, H., 1995: The model AMBETI: A detailed description of a soil–plant–atmosphere model. Berichte des Deutschen Wetterdienstes, Offenbach am Main, Nr. 195, 117 pp. [Available from Deutscher Wetterdienst, Zentralamt, Frankfurter Str. 135, 63067 Offenbach am Main, Germany.].

  • Brun, E., E. Martin, V. Simon, C. Gendre, and C. Coleou, 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol.,35 (121), 333–341.

    • Crossref
    • Export Citation
  • ——, P. David, and M. Sudul, 1992: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol.,38, 13–22.

    • Crossref
    • Export Citation
  • Brutsaert, W., 1975: On a derivable formula for long-wave radiation from clear skies. Water. Resour. Res.,11, 742–744.

    • Crossref
    • Export Citation
  • Cess, R. D., and Coauthors, 1991: Interpretation of snow-climate feedbacks as produced by 17 general circulation models. Science,253, 888–892.

  • Chalita, S., and H. Le Treut, 1994: The albedo of temperate and boreal forest and the Northern Hemisphere climate: A sensitivity experiment using the LMD GCM. Climate Dyn.,10, 231–240.

  • Chang, A. T. C., J. L., Foster, and D. K. Hall, 1990: Satellite estimates of Northern Hemisphere snow volume. Int. J. Remote Sens.,11, 167–172.

    • Crossref
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res.,101, 1194–1215.

    • Crossref
    • Export Citation
  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate,4, 689–706.

    • Crossref
    • Export Citation
  • ——, and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett.,26, 345–348.

    • Crossref
    • Export Citation
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn.,15, 183–203.

    • Crossref
    • Export Citation
  • Dai, Y.-J., and Q.-C. Zeng, 1997: A land-surface model (IAP94) for climate studies, Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci.,14, 433–460.

    • Crossref
    • Export Citation
  • Derbyshire, S. H., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor.,90, 297–325.

    • Crossref
    • Export Citation
  • de Rosnay, P., and J. Polcher, 1999: Modeling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci.,2, 239–255.

    • Crossref
    • Export Citation
  • Desborough, C. E., 1997: The impact of root-weighting on the response of transpiration to moisture stress in a land surface scheme. Mon. Wea. Rev.,125, 1920–1930.

    • Crossref
    • Export Citation
  • ——, 1999: Surface energy balance complexity in GCM land surface models. Climate Dyn.,15, 389–403.

    • Crossref
    • Export Citation
  • ——, and A. J. Pitman, 1998: The BASE land surface model. Global Planet. Change,19, 3–18.

    • Crossref
    • Export Citation
  • Dewey, K. F., 1977: Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon. Wea. Rev.,105, 1594–1597.

    • Crossref
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note TN-387 + STR, 72 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.].

  • Douville, H., J. F. Royer, and J. F. Mahfouf, 1995: A new snow parameterization for the Météo-France climate model. 1. Validation in stand-alone experiments. Climate Dyn.,12, 21–35.

    • Crossref
    • Export Citation
  • Dunkle, R. V., and J. T. Gier, 1955: Spectral characteristics of wet and dry snow between 0 and −60°C. U.S. Army Snow, Ice and Permafrost Research Establishment (US SIPRE) Tech. Rep. 16, 122 pp. [Available from Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755.].

  • Essery, R., 1997: Modelling fluxes of momentum, sensible heat and latent heat over heterogeneous snow cover. Quart. J. Roy. Meteor. Soc.,123, 1867–1883.

    • Crossref
    • Export Citation
  • ——, 1998: Boreal forests and snow in climate models. Hydrol. Processes,12, 1561–1567.

    • Crossref
    • Export Citation
  • ——, E. Martin, H. Douville, A. Fernández, and E. Brun, 1999: A comparison of four snow models using observations from an alpine site. Climate Dyn.,15, 583–593.

    • Crossref
    • Export Citation
  • Fedorov, S. F., 1977: A Study of the Components of the Water Balance in Forest Zone of European Part of the USSR (in Russian). Gidrometeoizdat, 264 pp.

  • Foster, J., and Coauthors, 1996: Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. J. Climate,9, 409–426.

    • Crossref
    • Export Citation
  • Garratt, J. R., and A. J. Prata, 1996: Downwelling longwave fluxes at continental surfaces—a comparison of observations with GCM simulations and implications for the global land surface radiation budget. J. Climate,9, 646–655.

    • Crossref
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc.,73, 1962–1970.

    • Crossref
    • Export Citation
  • Gedney, N., 1995: Development of a land surface scheme and its application to the Sahel. Ph.D. dissertation, University of Reading, 200 pp. [Available from Dept. of Meteorology, University of Reading, Reading RG6 6BB, United Kingdom.].

  • Giorgi, F., and R. Avissar, 1997: Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling. Rev. Geophys.,35 (4), 413–437.

    • Crossref
    • Export Citation
  • Griggs, M., 1968: Emissivities of natural surfaces in the 8- to 14-micron spectral region. J. Geophys. Res.,73, 7545–7551.

    • Crossref
    • Export Citation
  • Groisman, P. Ya., T. R. Karl, and R. W. Knight, 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science,263, 198–200.

    • Crossref
    • Export Citation
  • Gusev, Ye. M., and O. N. Nasonova, 1998: The land surface parameterization scheme SWAP: Description and partial validation. Global Planet. Change,19, 63–86.

    • Crossref
    • Export Citation
  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc.,76, 489–503.

    • Crossref
    • Export Citation
  • Hess, G. D., and B. J. McAvaney, 1998: Realisability constraints for land-surface schemes. Global Planet. Change,19, 241–245.

    • Crossref
    • Export Citation
  • Idso, S. B., 1981: A set of equations for full spectrum and 8–14-m and 10.5–12.5-m thermal radiation from cloudless skies. Water Resour. Res.,17 (1), 295–304.

    • Crossref
    • Export Citation
  • Jordan, R. E., E. L Andreas, and A. P. Makshatas, 1999: Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res.,104, 7785–7806.

    • Crossref
    • Export Citation
  • Kim, J., and M. Ek, 1995: A simulation of the surface energy budget and soil water content over the HAPEX-MOBILHY forest site. J. Geophys. Res.,100, 20 845–20 854.

    • Crossref
    • Export Citation
  • Kojima, K., 1967: Densification of seasonal snow cover. Physics of Snow and Ice, H. Oura, Ed., Institute of Low Temperature Science, 929–952.

  • Kondo, J., and H. Yamazawa, 1986: Measurement of snow surface emissivity. Bound.-Layer Meteor.,34, 415–416.

    • Crossref
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res.,104, 19 569–19 585.

    • Crossref
    • Export Citation
  • Krinner, G., C. Genthon, Z.-X. Lin, and P. Le Van, 1997: Studies of the Antarctic climate with a stretched-grid general circulation model. J. Geophys. Res.,102, 13 731–13 745.

    • Crossref
    • Export Citation
  • Kukla, G., 1981: Climatic role of snow covers. Sea Level, Ice and Climate Change, IAHS Publication No. 131, IAHS Press, 79–107.

  • Lamb, H. H., 1955: Two-way relationships between the snow or ice limit and 1000–500-mb thickness in the overlying atmosphere. Quart. J. Roy. Meteor. Soc.,81, 172–189.

    • Crossref
    • Export Citation
  • Leathers, D. J., and D. A. Robinson, 1993: The association between extremes in North American snow cover extent and United States temperatures. J. Climate,6, 1345–1355.

    • Crossref
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat and moisture during the melt of patchy snow covers. J. Appl. Meteor.,34, 1705–1715.

    • Crossref
    • Export Citation
  • ——, 1999: Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic and ecologic modeling. J. Appl. Meteor.,38, 1474–1487.

    • Crossref
    • Export Citation
  • Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res.,98, 10 451–10 464.

  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor.,17, 187–202.

    • Crossref
    • Export Citation
  • Lynch, A. H., D. L. McGinnis, and D. A. Bailey, 1998: Snow-albedo feedback and the spring transition in a regional climate system model: Influence of a land surface model. J. Geophys. Res.,103, 29 037–29 049.

    • Crossref
    • Export Citation
  • Lynch-Steiglitz, M., 1994: The development and validation of a simple snow model for the GISS GCM. J. Climate,7, 1842–1855.

    • Crossref
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. 1. The atmospheric circulation and the hydrology of the Earth’s surface. Mon. Wea. Rev.,97, 739–774.

    • Crossref
    • Export Citation
  • Mellor, M., 1977: Engineering properties of snow. J. Glaciol.,19, 15–66.

    • Crossref
    • Export Citation
  • Namias, J., 1985: Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon. Wea. Rev.,113, 1542–1553.

    • Crossref
    • Export Citation
  • Navarre, J. P., 1975: Modele unidimensionnel d’evolution de la neige deposee (A one-dimensional model of snowpack metamorphism). Meteorologie,4, 103–120.

  • Neumann, N., and P. Marsh, 1998: Local advection of sensible heat in the snowmelt landscape of Arctic tundra. Hydrol. Processes,12, 1547–1560.

    • Crossref
    • Export Citation
  • Noilhan, J., and J. F. Mahfouf, 1996: The ISBA land surface parameterization scheme. Global Planet. Change,13, 145–159.

    • Crossref
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2d ed. Routledge, 435 pp.

  • Pan, Z., S. G. Benjamin, J. M. Brown, and T. Smirnova, 1994: Comparative experiments with MAPS on different parameterization schemes for surface moisture flux and boundary layer processes. Mon. Wea. Rev.,122, 449–470.

    • Crossref
    • Export Citation
  • Pomeroy, J. W., and R. L. H. Essery, 1999: Turbulent fluxes during blowing snow: Field tests of model sublimation predictions. Hydrol. Processes,13, 2963–2975.

    • Crossref
    • Export Citation
  • ——, D. M. Gray, K. R. Shook, B. Toth, R. L. H. Essery, A. Pietroniro, and N. Hedstrom, 1998: An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Processes,12, 2339–2367.

    • Crossref
    • Export Citation
  • Randall, D. A., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res.,99, 20 757–20 771.

  • Rees, W. G., 1993a: Infrared emissivities of Arctic land cover types. Int. J. Remote Sens.,14, 1013–1017.

    • Crossref
    • Export Citation
  • ——, 1993b: Infrared emissivity of Arctic winter snow. Int. J. Remote Sens.,14, 3069–3073.

    • Crossref
    • Export Citation
  • Robinson, D. A., K. F. Dewey, and R. R. Heim, 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc.,74, 1689–1696.

    • Crossref
    • Export Citation
  • Robock, A., 1983: Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J. Atmos. Sci.,40, 986–997.

    • Crossref
    • Export Citation
  • ——, K. Ya. Vinnikov, C. A. Schlosser, N. A. Speranskaya, and Y. Xue, 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate,8, 15–35.

    • Crossref
    • Export Citation
  • Schimel, D. S., B. H. Braswell, E. A. Holland, R. McKeown, D. S. Ojima, T. H. Painter, W. J. Parton, and A. R. Townsend, 1994: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem. Cycles,8, 279–293.

  • Schlosser, C. A., A. Robock, K. Ya. Vinnikov, N. A. Speranskaya, and Y. Xue, 1997: 18-year land surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev.,125, 3279–3296.

    • Crossref
    • Export Citation
  • ——, and Coauthors, 2000: Standalone simulations of a boreal hydrology with land surface schemes used in atmospheric models:PILPS Phase 2(d). Mon. Wea. Rev.,128, 301–321.

    • Crossref
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate,9, 676–705.

    • Crossref
    • Export Citation
  • ——, and Coauthors, 1997: BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res.,102, 28 731–28 769.

  • Shmakin, A. B., 1998: The updated version of SPONSOR land surface scheme: PILPS-influenced improvements. Global Planet. Change,19, 49–62.

    • Crossref
    • Export Citation
  • Slater, A. G., A. J. Pitman, and C. E., Desborough, 1998: The validation of a snow parameterization designed for use in general circulation models. Int. J. Climatol.,18, 595–617.

    • Crossref
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev.,125, 1870–1884.

    • Crossref
    • Export Citation
  • ——, ——, ——, and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res.,105, 4077–4086.

    • Crossref
    • Export Citation
  • Sturm, M., and J. Holmgren, 1998: Differences in compaction behavior of three climate classes of snow. Ann. Glaciol.,26, 125–130.

    • Crossref
    • Export Citation
  • ——, ——, and G. E. Liston, 1995: A seasonal snow cover classification system for local to global applications. J. Climate,8, 1261–1283.

  • ——, ——, M. Konig, and K. Morris, 1997: The thermal conductivity of seasonal snow. J. Glaciol.,43, 26–41.

    • Crossref
    • Export Citation
  • Sud, Y. C., and D. M. Moko, 1999: New snow-physics to complement SSiB. Part 1: Design and evaluation with ISLSCP Initiative 1 datasets. J. Meteor. Soc. Japan.,77, 349–366.

    • Crossref
    • Export Citation
  • Tait, A. B., 1998: Estimation of snow water equivalent using passive microwave radiation data. Remote Sens. Environ.,64, 286–291.

    • Crossref
    • Export Citation
  • Tao, X., J. E., Walsh, and W. L. Chapman, 1996: An assessment of global climate model simulations of Arctic air temperatures. J. Climate,9, 1060–1076.

    • Crossref
    • Export Citation
  • Tilley, J. S., and A. H. Lynch, 1998: On the applicability of current land surface schemes for Arctic tundra: An intercomparison study. J. Geophys. Res.,103, 29 051–29 063.

    • Crossref
    • Export Citation
  • Vernekar, A. D., J. Zhou, and J. Shukla, 1995: The effect of Eurasian snow cover on the Indian monsoon. J. Climate,8, 248–266.

  • Verseghy, D. L., 1991: CLASS—a Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol.,11, 111–133.

    • Crossref
    • Export Citation
  • Vinnikov, K. Ya., A. Robock, N. A. Speranskaya, and C. A. Schlosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res.,101, 7163–7174.

    • Crossref
    • Export Citation
  • Viterbo, P., and A. C. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate,8, 2716–2748.

  • ——, and A. K. Betts, 1999: The impact on ECMWF forecasts to changes to the albedo of the boreal forests in the presence of snow. J. Geophys. Res.,104, 19 361–19 366.

  • ——, A. Beljaars, J. F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc.,125, 2401–2426.

    • Crossref
    • Export Citation
  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys. Space Phys.,20, 67–89.

    • Crossref
    • Export Citation
  • ——, and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci.,37, 2734–2745.

  • Warrilow, D. A., and E. Buckley, 1989: The impact of land surface processes on the moisture budget of a climate model. Ann. Geophys.,7, 439–450.

  • Wetzel, P., and A. Boone, 1995: A parameterization for land–atmosphere–cloud exchange (PLACE): Documentation and testing of a detailed process model of the partly cloudy boundary layer over heterogeneous land. J. Climate,8, 1810–1837.

  • Wiscombe, W. J., and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci.,37, 2712–2733.

  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate,4, 345–364.

    • Crossref
    • Export Citation
  • ——, F. J. Zeng, and C. A. Schlosser, 1996: SSiB and its sensitivity to soil properties—a case study using HAPEX–Mobilhy data. Global Planet. Change,13, 183–194.

    • Crossref
    • Export Citation
  • Yang, D., J. R. Metcalfe, B. E. Goodison, and E. Mekis, 1996: Adjustment for undercatch of the double fence intercomparison reference (DFIR) gauge. Annex 2.H, WMO Solid Precipitation Measurement Intercomparison Final Rep., Instruments and Observing Methods Rep. 67, WMO/TD 872, 305 pp.

  • Yang, Z. L., R. E. Dickinson, A. Robock, and K. Ya. Vinnikov, 1997:On validation of the snow sub-model of the biosphere–atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate,10, 353–373.

  • ——, G.-Y. Niu, and R. E. Dickinson, 1999a: Comparing snow simulations from NCAR LSM and BATS using PILPS 2d data. Preprints, 14th Conf. on Hydrology, Dallas, TX, Amer. Meteor. Soc., 316–319.

  • ——, and Coauthors, 1999b: Simulation of snow mass and extent in general circulation models. Hydrol. Processes,13, 2097–2113.

    • Crossref
    • Export Citation
  • Yeh, T.-C., R. T. Wetherald, and S. Manabe, 1983: A model study of the short-term climatic and hydrologic effects of sudden snow-cover removal. Mon. Wea. Rev.,111, 1013–1024.

    • Crossref
    • Export Citation
  • Yen, Y.-C., 1981: Review of thermal properties of snow, ice and sea ice. CRREL Rep. 81-10, 27 pp. [Available from Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755.].

  • Yosida, Z., 1955: Physical studies on deposited snow. Contrib. Inst. Low Temp. Sci.,7, 19–74.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 688 367 0
PDF Downloads 309 200 0

The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d)

View More View Less
  • 1 CIRES, University of Colorado, Boulder, Colorado
  • | 2 Department of Physical Geography, Macquarie University, Sydney, Australia
  • | 3 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
  • | 4 Department of Physical Geography, Macquarie University, Sydney, Australia
  • | 5 Australian Nuclear Science and Technology Organisation, Sydney, Australia
  • | 6 Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey
  • | 7 Department of Meteorology, University of Maryland, College Park, College Park, Maryland
  • | 8 Environmental Modeling Center, NOAA/NCEP, Camp Springs, Maryland
  • | 9 Météo-France/CNRM, Toulouse, France
  • | 10 German Meteorological Service, Braunschweig, Germany
  • | 11 Hadley Centre for Climate Prediction and Research, Bracknell, Berkshire, United Kingdom
  • | 12 Laboratoire de Meteorologie Dynamique du CNRS, Paris, France
  • | 13 Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona
  • | 14 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 15 Office of Hydrology, NOAA, Silver Spring, Maryland
  • | 16 Meteorology Department, Reading University, Reading, United Kingdom
  • | 17 Institute of Water Problems, Moscow, Russia
  • | 18 Lawrence Berkeley National Laboratory, Berkeley, California
  • | 19 Division of Atmospheric Research, CSIRO, Aspendale, Australia
  • | 20 Institute of Geography, Moscow, Russia
  • | 21 CIRES, University of Colorado, Boulder, Colorado
  • | 22 Climate Research Branch, Meteorological Service of Canada, Downsview, Ontario, Canada
  • | 23 Mesoscale Dynamics and Precipitation Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 24 Department of Geography, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

Twenty-one land surface schemes (LSSs) performed simulations forced by 18 yr of observed meteorological data from a grassland catchment at Valdai, Russia, as part of the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2(d). In this paper the authors examine the simulation of snow. In comparison with observations, the models are able to capture the broad features of the snow regime on both an intra- and interannual basis. However, weaknesses in the simulations exist, and early season ablation events are a significant source of model scatter. Over the 18-yr simulation, systematic differences between the models’ snow simulations are evident and reveal specific aspects of snow model parameterization and design as being responsible. Vapor exchange at the snow surface varies widely among the models, ranging from a large net loss to a small net source for the snow season. Snow albedo, fractional snow cover, and their interplay have a large effect on energy available for ablation, with differences among models most evident at low snow depths. The incorporation of the snowpack within an LSS structure affects the method by which snow accesses, as well as utilizes, available energy for ablation. The sensitivity of some models to longwave radiation, the dominant winter radiative flux, is partly due to a stability-induced feedback and the differing abilities of models to exchange turbulent energy with the atmosphere. Results presented in this paper suggest where weaknesses in macroscale snow modeling lie and where both theoretical and observational work should be focused to address these weaknesses.

Corresponding author address: Andrew G. Slater, Campus Box 216, CIRES, University of Colorado, Boulder, CO 80309-0216.

Email: aslater@cires.colorado.edu

Abstract

Twenty-one land surface schemes (LSSs) performed simulations forced by 18 yr of observed meteorological data from a grassland catchment at Valdai, Russia, as part of the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2(d). In this paper the authors examine the simulation of snow. In comparison with observations, the models are able to capture the broad features of the snow regime on both an intra- and interannual basis. However, weaknesses in the simulations exist, and early season ablation events are a significant source of model scatter. Over the 18-yr simulation, systematic differences between the models’ snow simulations are evident and reveal specific aspects of snow model parameterization and design as being responsible. Vapor exchange at the snow surface varies widely among the models, ranging from a large net loss to a small net source for the snow season. Snow albedo, fractional snow cover, and their interplay have a large effect on energy available for ablation, with differences among models most evident at low snow depths. The incorporation of the snowpack within an LSS structure affects the method by which snow accesses, as well as utilizes, available energy for ablation. The sensitivity of some models to longwave radiation, the dominant winter radiative flux, is partly due to a stability-induced feedback and the differing abilities of models to exchange turbulent energy with the atmosphere. Results presented in this paper suggest where weaknesses in macroscale snow modeling lie and where both theoretical and observational work should be focused to address these weaknesses.

Corresponding author address: Andrew G. Slater, Campus Box 216, CIRES, University of Colorado, Boulder, CO 80309-0216.

Email: aslater@cires.colorado.edu

Save