The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation

R. David Baker Mesoscale Atmospheric Processes Branch, NASA Goddard Space Flight Center, Universities Space Research Association, Greenbelt, and Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by R. David Baker in
Current site
Google Scholar
PubMed
Close
,
Barry H. Lynn Mesoscale Atmospheric Processes Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, and Center for Climate Systems Research, Columbia University, New York City, New York

Search for other papers by Barry H. Lynn in
Current site
Google Scholar
PubMed
Close
,
Aaron Boone Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

Search for other papers by Aaron Boone in
Current site
Google Scholar
PubMed
Close
,
Wei-Kuo Tao Mesoscale Atmospheric Processes Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Wei-Kuo Tao in
Current site
Google Scholar
PubMed
Close
, and
Joanne Simpson Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Joanne Simpson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized numerical simulations of Florida convection are performed with a coupled atmosphere–land surface model to identify the roles of initial soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. The 3D Goddard Cumulus Ensemble cloud-resolving model is coupled with the Goddard Parameterization for Land–Atmosphere–Cloud Exchange land surface model, thus providing a tool to simulate more realistically land surface–atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coastlines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). An additional simulation is performed to assess the role of Lake Okeechobee on convective development.

All model simulations capture the diurnal evolution and general distribution of sea-breeze-initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the convectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Soil moisture–induced mesoscale circulations do not produce heavy precipitation. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent heavy precipitation occurs earlier in simulations with curved coastlines. Early-morning land breezes influence the timing of precipitation by modifying low-level convergence. Because of nonlinear interaction between coastline curvature and soil moisture, the highest peak accumulated rainfall and highest peak rain rates occur in simulations with both coastline curvature and initial soil moisture variations. Lake Okeechobee influences the timing and location of precipitation because of strong lake-breeze circulations.

Corresponding author address: Dr. R. David Baker, Physics Department, Austin College, 900 North Grand Ave., Sherman, TX 75090.

Email: dbaker@austinc.edu

Abstract

Idealized numerical simulations of Florida convection are performed with a coupled atmosphere–land surface model to identify the roles of initial soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. The 3D Goddard Cumulus Ensemble cloud-resolving model is coupled with the Goddard Parameterization for Land–Atmosphere–Cloud Exchange land surface model, thus providing a tool to simulate more realistically land surface–atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coastlines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). An additional simulation is performed to assess the role of Lake Okeechobee on convective development.

All model simulations capture the diurnal evolution and general distribution of sea-breeze-initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the convectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Soil moisture–induced mesoscale circulations do not produce heavy precipitation. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent heavy precipitation occurs earlier in simulations with curved coastlines. Early-morning land breezes influence the timing of precipitation by modifying low-level convergence. Because of nonlinear interaction between coastline curvature and soil moisture, the highest peak accumulated rainfall and highest peak rain rates occur in simulations with both coastline curvature and initial soil moisture variations. Lake Okeechobee influences the timing and location of precipitation because of strong lake-breeze circulations.

Corresponding author address: Dr. R. David Baker, Physics Department, Austin College, 900 North Grand Ave., Sherman, TX 75090.

Email: dbaker@austinc.edu

Save
  • Atkins, N. T., and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev.,125, 2112–2130.

    • Crossref
    • Export Citation
  • Avissar, R., and Y.-Q. Liu, 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res.,101, 7499–7518.

    • Crossref
    • Export Citation
  • Beljaars, A. C. M., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993:Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev.,124, 362–383.

    • Crossref
    • Export Citation
  • Blanchard, D. O., and R. E. Lopez, 1985: Spatial patterns of convection in south Florida. Mon. Wea. Rev.,113, 1282–1299.

    • Crossref
    • Export Citation
  • Boybeyi, Z., and S. Raman, 1992: A three-dimensional numerical sensitivity study of convection over the Florida peninsula. Bound.-Layer Meteor.,60, 325–359.

    • Crossref
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci.,28, 181–189.

    • Crossref
    • Export Citation
  • Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida peninsula. J. Meteor.,5, 275–280.

    • Crossref
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the Project for Intercomparison of Land Surface Parameterization Schemes. J. Climate,10, 1194–1215.

  • Clark, C. A., and R. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor.,34, 2029–2045.

    • Crossref
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev.,124, 1767–1785.

    • Crossref
    • Export Citation
  • Doran, J. C., and Coauthors, 1992: The Boardman regional flux experiment. Bull. Amer. Meteor. Soc.,73, 1785–1795.

    • Crossref
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism. 1. Theory and observations. Water Resour. Res.,34, 765–776.

    • Crossref
    • Export Citation
  • Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev.,123, 291–313.

    • Crossref
    • Export Citation
  • Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci.,52, 1001–1033.

  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res.,33, 725–735.

    • Crossref
    • Export Citation
  • Halverson, J., M. Garstang, J. Scala, and W.-K. Tao, 1996: Water and energy budgets of a Florida mesoscale convective system: A combined observational and modeling study. Mon. Wea. Rev.,124, 1161–1180.

    • Crossref
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev.,123, 2913–2933.

    • Crossref
    • Export Citation
  • Lakshmi, V., E. F. Wood, and B. J. Choudhury, 1997: Evaluation of Special Sensor Microwave/Imager satellite data for regional soil moisture estimation over the Red River basin. J. Appl. Meteor.,36, 1309–1328.

    • Crossref
    • Export Citation
  • Lin, Y.-L., R. D. Rarley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor.,22, 1065–1092.

    • Crossref
    • Export Citation
  • Lynn, B. H., W.-K. Tao, and P. Wetzel, 1998: A study of landscape-generated deep moist convection. Mon. Wea. Rev.,126, 928–942.

    • Crossref
    • Export Citation
  • McPherson, R. D., 1970: A numerical study of the effect of a coastal irregularity on the sea breeze. J. Appl. Meteor.,9, 767–777.

    • Crossref
    • Export Citation
  • Meeson, B. W., F. E. Corprew, J. M. P. McManus, D. M. Meyers, J. W. Closs, K.-J. Sun, D. J. Sunday, and P. J. Sellers, 1995: ISLSCP Initiative I: Global Data Sets for Land-Atmosphere Models, 1987–1988. Vols. 1–5, NASA, CD-ROM.

  • Moncrieff, M., S. K. Krueger, D. Gregory, J. L. Redelsperger, and W. K. Tao, 1997: GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems. Bull. Amer. Meteor. Soc.,78, 831–845.

    • Crossref
    • Export Citation
  • Nair, U. S., M. R. Hjelmfelt, and R. A. Pielke Sr., 1997: Numerical simulation of the 9–10 June 1972 Black Hills storm using CSU RAMS. Mon. Wea. Rev.,125, 1753–1766.

    • Crossref
    • Export Citation
  • Nicholls, M. E., R. Pielke, and W. Cotton, 1991: A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida pennisula. Mon. Wea. Rev.,119, 298–323.

    • Crossref
    • Export Citation
  • Ookouchi, Y., M. Segal, R. C. Kessler, and R. A. Pielke, 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev.,112, 2281–2292.

    • Crossref
    • Export Citation
  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev.,102, 115–139.

    • Crossref
    • Export Citation
  • Pielke, R. A. Sr., R. L. Walko, L. T. Steyaert, P. L. Vidale, G. E. Liston, W. A. Lyons, and T. N. Chase, 1999: The influence of anthropogenic landscape changes on weather in south Florida. Mon. Wea. Rev.,127, 1663–1673.

    • Crossref
    • Export Citation
  • Rabin, R., S. Stadler, P. Wetzel, D. Stensrud, and M. Gregory, 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc.,71, 272–280.

    • Crossref
    • Export Citation
  • Rao, P. A., H. E. Fuelberg, and K. K. Droegemeier, 1999: High-resolution modeling of the Cape Canaveral area land–water circulations and associated features. Mon. Wea. Rev.,127, 1808–1821.

    • Crossref
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci.,45, 463–485.

    • Crossref
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold frontal rainbands. J. Atmos. Sci.,41, 2949–2972.

  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc.,73, 1593–1604.

    • Crossref
    • Export Citation
  • ——, ——, C. Clark, R. Rabin, and J. Brown, 1995: Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain. Mon. Wea. Rev.,123, 383–400.

    • Crossref
    • Export Citation
  • Simpson, J., and W.-K. Tao, 1993: Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Oceanic Sci.,4, 73–116.

    • Crossref
    • Export Citation
  • ——, N. E. Westcott, R. J. Clerman, and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklimatol.,29, 1–40.

    • Crossref
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1989: A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci.,46, 2974–3004.

    • Crossref
    • Export Citation
  • ——, and ——, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci.,4, 35–72.

    • Crossref
    • Export Citation
  • Taylor, C. M., F. Said, and T. Lebel, 1997: Interactions between the land surface and mesoscale rainfall variability during HAPEX-Sahel. Mon. Wea. Rev.,125, 2211–2227.

    • Crossref
    • Export Citation
  • Ulanski, S. L., and M. Garstang, 1978: The role of surface divergence and vorticity in the life cycle of convective rainfall. Part I: Observation and analysis. J. Atmos. Sci.,35, 1047–1062.

  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc.,78, 173–195.

    • Crossref
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev.,125, 527–548.

    • Crossref
    • Export Citation
  • Wetzel, P., and A. Boone, 1995: A Parameterization for Land–Atmosphere–Cloud Exchange (PLACE): Documentation and testing of a detailed process model of the partly cloudy boundary layer over heterogeneous land. J. Climate,8, 1810–1837.

  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev.,125, 1507–1525.

    • Crossref
    • Export Citation
  • Woodruff, S. D., S. J. Lubker, K. Wolter, S. J. Worley, and J. D. Elms, 1993: Comprehensive Ocean–Atmosphere Data Set (COADS) Release 1a: 1980–92. Earth Syst. Monit.,4, 1–8.

  • Xu, L., S. Raman, R. V. Madala, and R. Hodur, 1996: A non-hydrostatic modeling study of surface moisture effects on mesoscale convection induced by sea breeze circulation. Meteor. Atmos. Phy.,58, 103–122.

    • Crossref
    • Export Citation
  • Yan, H., and R. A. Anthes, 1988: The effect of variations in surface moisture on mesoscale circulations. Mon. Wea. Rev.,116, 192–208.

    • Crossref
    • Export Citation
  • Zilitinkevich, S. S., 1975: Comments on “A model for the dynamics of the inversion above a convective boundary layer.” J. Atmos. Sci.,32, 991–992.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1476 282 27
PDF Downloads 789 164 13